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Abstract. We introduce ω-Petri nets (ωPN), an extension of plain Petri nets with ω-labeled input
and output arcs, that is well-suited to analyse parametric concurrent systems with dynamic thread
creation. Most techniques (such as the Karp and Miller tree or the Rackoff technique) that have been
proposed in the setting of plain Petri nets do not apply directly to ωPN because ωPN define transition
systems that have infinite branching. This motivates a thorough analysis of the computational aspects
of ωPN. We show that an ωPN can be turned into a plain Petri net that allows us to recover the
reachability set of the ωPN, but that does not preserve termination (an ωPN terminates iff it admits no
infinitely long execution). This yields complexity bounds for the reachability, (place) boundedness
and coverability problems on ωPN. We provide a practical algorithm to compute a coverability set of
the ωPN and to decide termination by adapting the classical Karp and Miller tree construction. We
also adapt the Rackoff technique to ωPN, to obtain the exact complexity of the termination problem.
Finally, we consider the extension of ωPN with reset and transfer arcs, and show how this extension
impacts the decidability and complexity of the aforementioned problems.

1. Introduction

In this paper, we introduce ω-Petri nets (ωPN), an extension of plain Petri nets (PN) that permits input
and output arcs to be labeled by the symbol ω, instead of a natural number. An ω-labeled input arc
consumes, non-deterministically, any number of tokens in its input place while an ω-labeled output
arc produces non-deterministically any number of tokens in its output place. We claim that ωPN are
∗Partially supported by a ‘Crédit aux chercheurs’ of the F.R.S/FNRS.
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1 one_task(int k) {

2 // some work ...

3 }

4 main(int P ) {

5 for i := 1 to P step 1

6 fork(one_task(i))

7 }

fork K

p1

p2

one task

(a)
fork •

p1

p2

one task

(b)
fork •

p1

p2

one task

(c)

ω

Figure 1. An example of a parametric system with three possible models

particularly well suited for modeling parametric concurrent systems — see for instance our recent work
on the Grand Central Dispatch (GCD) technology [13] —, and to perform parametric verification [16]
on those systems, as we illustrate now by means of the example in Fig. 1. The example present a
skeleton of a distributed program, in which a main function forks P parallel threads (where P is a
parameter of the program), each executing the one task function. Many distributed programs follow
this abstract skeleton that allows us to perform calculations in parallel, and being able to model precisely
such concurrent behaviors is an important issue. In particular, we would like that the model captures the
fact that P is a parameter, so that we can, for instance, check that the execution of the program always
terminates (assuming each individual execution of one task does), for all possible values of P . Clearly,
the Petri net (a) in Fig. 1 does not capture the parametric nature of the example, as place p1 contains a
fixed number K of tokens. The PN (b), on the other hand captures the fact that the program can fork

an unbounded number of threads, but does not preserve termination: (fork)ω is an infinite execution of
PN (b), while the programme terminates (assuming each one task thread terminates) for all values of
P , because the for loop in line 5 executes exactly P times. Finally, observe that the ωPN (c) has the
desired properties: firing transition fork creates non-deterministically an unbounded albeit finite number
of tokens in p2 (to model all the possible executions of the for loop in line 5), and all possible executions
of this ωPN terminate, because the number of tokens produced in p2 remains finite and no further token
creation in p2 is allowed after the firing of the fork transition.

While close to Petri nets, ωPN are sufficiently different that a thorough and careful study of their
computational properties is required. This is the main contribution of the paper. A first example of
discrepancy is that the semantics of ωPN is an infinite transition system which is infinitely branching.
This is not the case for plain PN: their transition systems can be infinite but they are finitely branching.
As a consequence, some of the classical techniques for the analysis of Petri nets cannot be applied.
Consider for example the finite unfolding of the transition system [12] that stops the development of a
branch of the reachability tree whenever a node with a smaller ancestor is found. This tree is finite (and
can be built effectively) for any plain Petri net and any initial marking because the set of markings Nk
is well-quasi ordered, and finite branching of plain Petri nets allows for the use of König’s lemma1.
However, this technique cannot be applied to ωPN, as they are infinitely branching. Such peculiarities
of ωPN motivate our study of three different tools for analysing them. First, we consider, in Section 3, a
variant of the Karp and Miller tree [18] that applies to ωPN. In order to cope with the infinite branching
of the semantics of ωPN, we need to introduce in the Karp and Miller tree ω’s that are not the result of
accelerations but the result of ω-output arcs. Our variant of the Karp and Miller construction is recursive,

1In fact, this construction is applicable to any well-structured transition system which is finitely branching and permits to decide
the termination problem for example.
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Table 1. Complexity results on ωPN (with the section numbers where the results are proved). ωIPN+R
(ωOPN+R) and ωIPN+T (ωOPN+T) denote resp. Petri nets with reset (R) and transfer (T) arcs with ω on in-
put (output) arcs only.

Problem ωPN ωPN+T ωPN+R

Reachability Decidable and EX-
PSPACE-hard (4) Undecidable (7)

Undecidable (7)
Place-boundedness

EXPSPACE-c (4)Boundedness Decidable (7)
Coverability Decidable and Ackerman-hard (7)

Problem ωPN ωOPN+T, ωOPN+R ωIPN+T, ωIPN+R

Termination EXPSPACE-c (5) Undecidable (7) Decidable and
Ackerman-hard (7)

this allows us to tame the technicality of the proof, and as a consequence, our proof when applied to plain
Petri nets, provides a simplification of the original proof by Karp and Miller. Second, in Section 4, we
show how to construct, from an ωPN, a plain Petri net that preserves its reachability set. This reduction
allows us to prove that many bounds on the algorithmic complexity of (plain) PN problems apply to ωPN
too. However, it does not preserve termination. Thus, we study, in Section 5, as a third contribution, an
extension of the self-covering path technique due to Rackoff [22]. This technique allows us to provide
a direct proof of EXPSPACE upper bounds for several classical decision problems, and in particular, this
allows us to prove EXPSPACE completeness of the termination problem. Third, in Section 6, we show
how to compute, given an ωPN N and a marking m which is coverable in N , all concretisations of N
in which m is still covered. By concretisation, we mean a plain PN in which all ω’s have been replaced
by natural numbers. Such a technique is useful for debugging purpose.

Finally, in Section 7, as an additional contribution, and to get a complete picture, we consider exten-
sions of ωPN with reset and transfer arcs [8]. For those extensions, the decidability results for reset and
transfer nets (without ω arcs) also apply to our extension with the notable exception of the termination
problem that becomes, as we show here, undecidable. The summary of our results are given in Table 1.

Related works ωPN are well-structured transition systems [12]. The symbolic backward analysis [1]
can be applied to ωPN while the finite tree unfolding is not applicable because of the infinite branching
property of ωPN. For the same reason, ωPN are not well-structured nets [11]. In a recent work [2],
Blondin et al. extend the completion technique for WSTS to infinitely branching WSTS, a general class
that contain ωPN. Their technique are very general, while ours are specialised to ωPN.

In [4], Brazdil et al. extends the Rackoff technique to games for vector addition systems with states
(VASS) extended by ω output arcs. This extension of the Rackoff technique is close to ours. However,
their technical results have been formulated in the setting of games, that we do not consider here.

Several works (see for instance [6, 5]) rely on Petri nets to model parametric systems and perform
parametrised verification. However, in all these works, the dynamic creation of threads uses the same
pattern as in Fig. 1 (b), and does not preserve termination. ωPN allow us to model more faithfully the dy-
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namic creation of an unbounded number of threads, and are thus better suited to model new programming
paradigms (such as GCD [13]) that have been recently proposed to better support multi-core platforms.

2. ω-Petri nets

Let us define the syntax and semantics of our Petri net extension, called ω Petri nets (ωPN for short).
Let ω be a symbol that denotes ‘any positive integer value’. We extend the arithmetic and the≤ ordering
on Z to Z ∪ {ω} as follows: ω + ω = ω − ω = ω; and for all c ∈ Z: c + ω = ω + c = ω − c =
ω; c − ω = c; and c ≤ ω. The fact that c − ω = c might sound surprising but will be justified
later when we introduce ωPN . An ω-multiset (or simply multiset) of elements from S is a function
m : S 7→ N ∪ {ω}. We denote multisets m of S = {s1, s2, . . . , sn} by extension using the syntax
{m(s1) ⊗ s1,m(s2) ⊗ s2, . . . ,m(sn) ⊗ sn} (when m(s) = 1, we write s instead of m(s) ⊗ s, and
we omit elements m(s) ⊗ s when m(s) = 0). Given two multisets m1 and m2, and an integer value c
we let m1 + m2 be the multiset s.t. (m1 + m2)(p) = m1(p) + m2(p); m1 − m2 be the multiset s.t.
(m1 −m2)(p) = m1(p)−m2(p); and c ·m1 be the multiset s.t. (c ·m1)(p) = c×m1(p) for all p ∈ P .

Syntax Syntactically, ωPN extend plain Petri nets [21, 23] by allowing (input and output) arcs to be
labeled by ω. Intuitively, if a transition t has ω as output (resp. input) effect on place p, the firing of t
non-deterministically creates (consumes) a positive number of tokens in p.

Definition 2.1. A Petri net with ω-arcs (ωPN) is a tuple N = 〈P, T 〉 where: P is a finite set of places;
T a finite set of transitions. Each transition is a pair t = (I,O), where: I : P → N ∪ {ω} and
O : P → N ∪ {ω}, give respectively the input (output) effect I(p) (O(p)) of t on place p.

By abuse of notation, we denote by I(t) (resp. O(t)) the functions s.t. t = (I(t), O(t)). When conve-
nient, we sometimes regard I(t) or O(t) as ω-multisets of places. Whenever there is p s.t. O(t)(p) = ω
(resp. I(t)(p) = ω), we say that t is an ω-output-transition (ω-input-transition). A transition t is an
ω-transition iff it is an ω-output-transition or an ω-input-transition. Otherwise, t is a plain transition.
Note that a (plain) Petri net is an ωPN with plain transitions only. Moreover, when an ωPN contains
no ω-output-transitions (resp. no ω-input transitions), we say that it is an ω-input-PN (ω-output-PN), or
ωIPN (ωOPN) for short. For all transitions t, we denote by effect(t) the function O(t) − I(t). Note
that effect(t)(p) could be ω for some p (in particular when O(t)(p) = I(t)(p) = ω). Intuitively,
effect(t)(p) = ω models the fact that firing t can increase the marking of p by an arbitrary number of
tokens. Finally, observe that O(t)(p) = c 6= ω and I(t)(p) = ω implies effect(t)(p) = c − ω = c.
This models the fact that firing t can at most increase the marking of p by c tokens. Thus, intuitively,
the value effect(t)(p) models the maximal possible effect of t on p. We extend the definition of effect to
sequences of transitions σ = t1t2 · · · tn by letting effect(σ) =

∑n
i=1 effect(ti).

A marking is a function P 7→ N. An ω-marking is a function P 7→ N ∪ {ω}, i.e. an ω-multiset
on P . Any marking is an ω-marking. For all transitions t = (I,O), I and O are both ω-markings.
We denote by 0 the marking s.t. 0(p) = 0 for all p ∈ P . For all ω-markings m, we let ω(m) be the
set of places {p | m(p) = ω}, and let nbω (m) = |ω(m)|. We define the concretisation of m as the
set of all markings that coincide with m on all places p 6∈ ω(m), and take an arbitrary value in any
place from ω(m). Formally: γ(m) = {m′ | ∀p 6∈ ω(m) : m′(p) = m(p)}. We further define a
family of orderings on ω-markings as follows. For any P ′ ⊆ P , we let m1 �P ′ m2 iff (i) for all p ∈ P ′:
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p1 t1
p2 t2

p3

t4t3

ω 2
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Figure 2. Left: an example ωPN N1. The ωPN N ′1 is obtained by removing transition t4 (gray). Right: The KM
trees T1 (whole tree) and T ′1 (bold nodes, i.e. w/o n7) of resp. N1 and N ′1.

m1(p) ≤ m2(p), and (ii) for all p ∈ P \P ′: m1(p) = m2(p). We abbreviate�P by� (where P is the set
of places of the ωPN). It is well-known that� is a well-quasi ordering (wqo), that is, we can extract, from
any infinite sequence m1,m2, . . . ,mi, . . . of markings, an infinite subsequence m1,m2, . . . ,mi, . . . s.t.
mi � mi+1 for all i ≥ 1. For all ω-markings m, we let ↓(m) be the downward-closure of m, defined as
↓(m) = {m′ | m′ is a marking and m′ � m}. We extend ↓ to sets of ω-markings: ↓(S) = ∪m∈S ↓(m).
A set D of markings is downward-closed iff ↓ (D) = D. It is well-known that (possibly infinite)
downward-closed sets of markings can always be represented by a finite set of ω-markings, because the
set of ω-markings forms an adequate domain of limits [14]: for all downward-closed setsD of markings,
there exists a finite set M of ω-markings s.t. ↓(M) = D. We associate, to each ωPN, an initial marking
m0. From now on, we consider mostly initialised ωPN 〈P, T,m0〉.

Example 2.2. An example of an ωPN (actually an ωOPN)N1 = 〈P, T,m0〉 is shown in Fig. 2 (left). In
this example, P = {p1, p2, p3}, T = {t1, t2, t3, t4}, m0(p1) = 1 and m0(p2) = m0(p3) = 0. t1 is the
only ω-transition, with O(t1)(p2) = ω. This ωPN will serve as a running example in this section.

Semantics Let m be an ω-marking. A transition t = (I,O) is firable from m iff: m(p) � I(p) for
all p s.t. I(p) 6= ω. We consider two kinds of possible effects for t. The first is the concrete semantics
and applies only when m is a marking. In this case, firing t yields a new marking m′ s.t. for all p ∈ P :
m′(p) = m(p) − i + o where: (i) i = I(t)(p) if I(t)(p) 6= ω; (ii) i ∈ {0, . . . ,m(p)} if I(t)(p) = ω;
(iii) o = O(t)(p) if O(t)(p) 6= ω; (iv) and o ≥ 0 if O(t)(p) = ω. This is denoted by m t−→ m′. Thus,
intuitively, I(t)(p) = ω (resp. O(t)(p) = ω) means that t consumes (produces) an arbitrary number of
tokens in p when fired. Note that, in the concrete semantics, ω-transitions are non-deterministic: when
t is an ω-transition with an ω-output arc that is firable in m, there are infinitely many m′ s.t. m t−→ m′.
The latter semantics is the ω-semantics. In this case, firing t = (I,O) yields the (unique) ω-marking
m′ = m− I +O (denoted m t−→ω m

′). Note that m t−→ m′ iff m t−→ω m
′ when m and m′ are markings.

We extend the→ and→ω relations to finite or infinite sequences of transitions in the usual way. Also
we write m σ−→ iff σ is firable from m. More precisely, for a finite sequence of transitions σ = t1 · · · tn,
we write m σ−→ iff there are m1, . . . , mn s.t. for all 1 ≤ i ≤ n: mi−1

ti−→ mi. For an infinite sequence of
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transitions σ = t1 · · · tj · · · , we writem0
σ−→ iff there arem1, . . . ,mj , . . . s.t. for all i ≥ 1: mi−1

ti−→ mi.
Given an ωPNN = 〈P, T,m0〉, an execution ofN is either a finite sequence of the form m0, t1,m1,

t2, . . . , tn,mn s.t. m0
t1−→ m1

t2−→ · · · tn−→ mn, or an infinite sequence of the form m0, t1,m1, t2, . . . , tj ,

mj , . . . s.t. for all j ≥ 1: mj−1
tj−→ mj . We denote by Reach(N ) the set of markings {m | ∃σ s.t. m0

σ−→
m} that are reachable fromm0 inN . Finally, a finite set of ω-markings CS is a coverability set ofN (with
initial marking m0) iff ↓(CS) =↓(Reach(N )). That is, any coverability set CS is a finite representation
of the downward-closure of N ’s reachable markings.

Example 2.3. The sequence t1tK2 is firable for all K ≥ 0 in N1 (Fig. 2): for each K ≥ 0, one possible
execution corresponding to t1tK2 is given by 〈1, 0, 0〉 t1−→ 〈0, 3K, 0〉 t2−→ 〈0, 3K − 1, 2〉 t2−→ 〈0, 3K −
2, 4〉 t2−→ · · · t2−→ 〈0, 2K, 2K〉. There are other possible executions corresponding to the same sequence
of transitions, because the number of tokens created by t1 in p2 is chosen non-deterministically. Also,
t1t2t

ω
4 is an infinite firable sequence of transitions. The set of reachable markings in N1 is Reach(N ) =

{〈1, 0, 0〉}∪{〈0, i, 2× j〉 | i, j ∈ N}. The set of ω markings CS = {〈1, 0, 0〉, 〈0, ω, ω〉} is a coverability
set of N . Note that ↓(CS) ) Reach(N ): for instance, 〈0, 1, 1〉 ∈↓(CS), but 〈0, 1, 1〉 is not reachable.

Let us now observe two properties of the semantics of ωPN, that will be useful for the proofs of
Section 3. First, when firing a sequence of transitions σ that have non ω-labeled arcs on to and from
some place p, the effect of σ on p is as in a plain PN. Second, the set of markings that are reachable by
a given sequence of transitions σ is upward-closed2 w.r.t. �P ′ , where P ′ is the set of places where the
effect of σ is ω.

Lemma 2.4. Let m and m′ be two markings and let σ = t1 · · · tn be a sequence of transitions of an
ωPN s.t. m

σ−→ m′. Let p be a place s.t. for all 1 ≤ i ≤ n: O(ti)(p) 6= ω 6= I(ti)(p). Then,
m′(p) = m(p) + effect(σ)(p).

Lemma 2.5. Let m1, m2 and m3 be three markings, and let σ be a sequence of transitions s.t. (i) m1
σ−→

m2; and (ii) m3 �P ′ m2 with P ′ = {p | effect(σ)(p) = ω}. Then, m1
σ−→ m3.

Problems We consider the following problems, whereN = (P, T,m0) is an ωPN. (1) The reachability
problem asks, given a marking m, whether m ∈ Reach(N). (2) The place boundedness problem asks,
given a place p of N , whether there exists K ∈ N s.t. for all m ∈ Reach(N ): m(p) ≤ K. If the
answer is positive, we say that p is bounded (from m0). (3) The boundedness problem asks whether all
places ofN are bounded (from m0). (4) The covering problem asks, given a marking m ofN , if there is
m′ ∈ Reach(N ) s.t. m′ � m. (5) The termination problem asks whether all executions of N are finite.

A coverability set of the ωPN is sufficient to solve boundedness, place boundedness and covering,
as in the case of Petri nets. If CS is a coverability set of N , then: (i) p is bounded iff m(p) 6= ω for
all m ∈ CS; (ii) N is bounded iff m(p) 6= ω for all p and for all m ∈ CS; and (iii), N can cover
m iff there exists m′ ∈ CS s.t. m � m′. As in the plain Petri nets case, a sufficient and necessary
condition of non-termination is the existence of a self covering execution. A self covering execution of

an ωPN N = 〈P, T,m0〉 is a finite execution of the form m0
t1−→ m1 · · ·

tk−→ mk
tk+1−−−→ · · · tn−→ mn with

mn � mk:
2A set U ⊆ S is upward-closed wrt to a partial order ≤ iff for all u ∈ U and s ∈ S: u ≤ s implies that s ∈ U .
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Lemma 2.6. An ωPN terminates iff it admits no self-covering execution.

Proof:
Assume N = 〈P, T,m0〉 admits an infinite execution m0

t1−→ m1 → t2 · · ·
tj−→ mj

tj+1−−→ · · · . Since � is
a well-quasi ordering on the markings, there are two positions α and β in the execution s.t. α ≤ β and

mα � mβ . Hence, m0
t1−→ m1

t2−→ · · ·
tβ−→ mβ is a self-covering execution.

For the reverse implication, assumeN = 〈P, T,m0〉 admits a self-covering execution m0
t1−→ m1 →

t2 · · ·
tn−→ mn and assume 0 ≤ k < n is a position s.t. mk � mn. Then, by monotonicity, it is possible to

fire infinitely often the tk+1 · · · tn sequence frommk. More precisely, one can check that the following is

an infinite execution ofN : m0
t1−→ m1 · · ·

tk−→ mk
tk+1−−−→ m0

k+1 · · ·
tn−→ m0

n

tk+1−−−→ m1
k+1 · · ·

tn−→ m1
n

tk+1−−−→
m2
k+1 · · ·

tn−→ m2
n · · ·

tk+1−−−→ mj
k+1 · · ·

tn−→ mj
n · · · , where for all 1 ≤ i ≤ n − k: m0

k+i = mk+i, for all
j ≥ 1, mj

k+1 = mj−1
n + (mk+1−mk) and for all 2 ≤ i ≤ n− k: mj

i = mj
i−1 + (mk+i−mk+i−1). ut

Example 2.7. Consider again the ωPN N1 in Fig. 2. Recall from Example 2.3 that, for all K ≥ 0, t1tK2
is firable and allows to reach 〈0, 2K, 2K〉. All these markings are thus reachable. These sequences of
transitions also show that p2 and p3 are unbounded (hence, N1 is unbounded too), while p1 is bounded.
Marking 〈0, 1, 1〉 is not reachable but coverable, while 〈2, 0, 0〉 is neither reachable nor coverable. Fi-
nally, N1 does not terminate (because t1t2tω4 is firable), while N ′1 does. In particular, in N ′1, t3 can fire
only a finite number of times, because t1 will always create a finite (albeit unbounded) number of tokens
in p2. This an important difference between ωPN and plain PN: no unbounded PNs terminates, while
there are unbounded ωPN that terminate, e.g. N ′1.

3. A Karp and Miller procedure for ωPN

In this section, we present an extension of the classical Karp & Miller procedure [18], adapted to ωPN.
We show that the finite tree built by this algorithm (coined the KM tree), allows us, as in the case of PNs,
to decide boundedness, place boundedness, coverability and termination on ωPN.

Before describing the algorithm, we discuss intuitively the KM trees of the ωPN N1 and N ′1 given
in Fig. 2. Their respective KM trees (for the initial marking m0 = 〈1, 0, 0〉) are T1 and T ′1 , respec-
tively the tree in Fig. 2 and its subtree made of the bold nodes (i.e., excluding n7). As can be ob-
served, the nodes and edges of a KM tree are labeled by ω-markings and transitions respectively. The
relationship between a KM tree and the executions of the corresponding ωPN can be formalised us-
ing the notion of stuttering path. Intuitively, a stuttering path is a sequence of nodes n1, n2, . . . , nk
s.t. for all i ≥ 2: either ni is a son of ni−1, or ni is an ancestor of ni−1 that has the same label
as ni−1. For instance, π = n1, n2, n4, n2, n3, n6, n3, n5, n3, n5 is a stuttering path in T ′1 . Then, we
claim (i) that every execution of the ωPN is simulated by a stuttering path in its KM tree, and that (ii)
every stuttering path in the KM tree corresponds to a family of executions of the ωPN, where an arbi-
trary number of tokens can be produced in the places marked by ω in the KM tree. For instance, the
execution m0, t1, 〈0, 42, 0〉, t3, 〈0, 41, 0〉, t2, 〈0, 40, 2〉, t3, 〈0, 39, 2〉, t2, 〈0, 38, 4〉, t2, 〈0, 37, 6〉, of N ′1 is
witnessed in T ′1 by the stuttering path π given above – observe that the sequence of edge labels in
π’s equals the sequence of transitions of the execution, and that all markings along the execution are
covered by the labels of the corresponding nodes in π: m0 ∈ γ(n1), 〈0, 42, 0〉 ∈ γ(n2), and so
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forth. On the other hand, the stuttering path n1, n2, n3 of N1 summarises all the (infinitely many)
possible executions obtained by firing a sequence of the form t1t

n
2 . Indeed, for all k ≥ 1, ` ≥ 0:

m0, t1, 〈0, k + `, 0〉, t2, 〈0, k + ` − 1, 2〉, t2, . . . , t2, 〈0, k, 2 × `〉 is an execution of N1, so, an arbitrary
number of tokens can be obtained in both p2 and p3 by firing sequences of the form t1t

n
2 . Finally, observe

that a self-covering execution of N1, such as m0, t1, 〈0, 1, 0〉, t2, 〈0, 0, 2〉, t4, 〈0, 0, 2〉 can be detected in
T1, by considering the path n1, n2, n3, n7, and noting that the label of (n3, n7) is t4 with effect(t4) � 0.

3.1. The Build-KM algorithm

Let us now show how to build algorithmically the KM of an ωPN. Recall that, in the case of plain PNs,
the Karp & Miller tree [18] can be regarded as a finite over-approximation of the (potentially infinite)
reachability tree of the PN. Thus, the Karp & Miller algorithm works by unfolding the transition relation
of the PN, and adds two ingredients to guarantee that the tree is finite. First, a node n that has an
ancestor n′ with the same label is not developed (it has no children). Second, when a node n with label
m has an ancestor n′ with label m′ ≺ m, an acceleration function is applied to produce a marking
mω s.t. mω(p) = ω if m(p) > m′(p) and mω(p) = m(p) otherwise. This acceleration is sound wrt
to coverability since the sequence of transition that has produced the branch (n, n′) can be iterated an
arbitrary number of times, thus producing arbitrary large numbers of tokens in the places marked by ω in
mω. Remark that these two constructions are not sufficient to ensure termination of the algorithm in the
case of ωPN, as ωPN are not finitely branching (firing an ω-output-transition can produce infinitely many
different successors). To cope with this difficulty, our solution unfolds the ω-semantics→ω instead of the
concrete semantics→. This has an important consequence: whereas the presence of a node labeled by
m with m(p) = ω in the KM tree of a PN N implies that N does not terminate, this is not true anymore
in the case of ωPN. For instance, all nodes but n1 in T ′1 (Fig. 2) are marked by ω, yet the corresponding
ωPN N ′1 (Fig. 2) does terminate.

Our version of the Karp & Miller tree adapted to ωPN is given in Fig. 3. It builds a tree T =
〈N,E, λ, µ, n0〉 where: N is a set of nodes; E ⊆ N × N is a set of edges; λ : N 7→ (N ∪ {ω})P
is a function that labels nodes by ω-markings3; µ : E 7→ T is a labeling function that labels arcs by
transitions; and n0 ∈ N is the root of the tree. For each edge e, we let effect(e) = effect(µ(e)). Let
E+ and E∗ be respectively the transitive and the transitive reflexive closure of E. A stuttering path is
a finite sequence n0, n1, . . . , n` s.t. for all 1 ≤ i ≤ `: either (ni−1, ni) ∈ E or (ni, ni−1) ∈ E+ and
λ(ni) = λ(ni−1). A stuttering path n0, n1, . . . , n` is a (plain) path iff (ni−1, ni) ∈ E for all 1 ≤ i ≤ `.
Given two nodes n and n′ s.t. (n, n′) ∈ E∗, we denote by n n′ the (unique path) from n to n′. Given a
stuttering path π = n0, n1, . . . , n`, we denote by µ(π) the sequence µ(n0, n1)µ(n1, n2) · · ·µ(n`−1, n`)
assuming µ(ni, ni+1) = ε when (ni, ni+1) 6∈ E; and by effect(π) =

∑`
i=1 effect(ni−1, ni), letting

effect(ni−1, ni) = 0 when (ni, ni+1) 6∈ E.
Build-KM follows the intuition given above. At all times, it maintains a frontier U of tree nodes that

are candidate for development (initially, U = {n0}, with λ(n0) = m0). Then, Build-KM iteratively
picks up a node n from U (see line 4), and develops it (line 6 onwards) if n has no ancestor n′ with the
same label (line 5). Developing a node n amounts to computing all the marking mw s.t. λ(n) →ω mw

(line 17), performing accelerations (line 19) if need be, and inserting the resulting children in the tree.
Note that Build-KM is recursive (see line 9): every time a marking m with an extra ω is created, it

3We extend λ to set of nodes S in the usual way: λ(S) = {λ(n) | n ∈ S}.
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Input: an ωOPN N = 〈P, T 〉 and an ω-marking m0. Output: the KM of N , starting from m0.
Build-KM (N ,m0):

1 T := 〈N,E, λ, µ, n0〉 where N = {n0} with λ(n0) = m0

2 U := {n0}
3 while U 6= ∅:
4 select and remove n from U

5 if @n st (n, n) ∈ E+ and λ(n) = λ(n):
6 forall t in T s.t. ∀p ∈ P : I(t)(p) 6= ω implies λ(n)(p) ≥ I(t)(p):
7 m′ := Post(N ,λ(n), t)
8 if nbω (m′) > nbω (λ(n)):
9 T ′ := Build-KM(N ,m′)

10 add all edge and nodes of T ′ to T
11 let n′ be the root of T ′
12 else

13 n′ := new node with λ(n′) = m′

14 U := U ∪ {n′}
15 E := E ∪ (n, n′) s.t. µ(n, n′) = t.
16 return T

Post(N ,n,t):
17 mw := λ(n)− I(t) +O(t)
18 if ∃n : (n, n) ∈ E+ ∧ λ(n) ≺ λ(n)):
19 for all p s.t. effect(n n · t)(p) > 0: mw(p) := ω
20 return mw

Figure 3. The algorithm to build the KM of an ωPN.

performs a recursive call to Build-KM(N ,m), using m as initial marking4.
In the rest of the section we prove correctness of this algorithm. We first establish termination, then

soundness and finally completeness. To this end, we rely on the following notions. Symmetrically to
self-covering executions we define the notion of self-covering (stuttering) path in a tree: a (stuttering)
path π is self-covering iff π = π1π2 with effect(π2) ≥ 0. A self-covering stuttering path π = π1π2 is
ω-maximal iff for all nodes n, n′ along π2: nbω (n) = nbω (n′).

3.2. Correctness of the Build-KM algorithm

Termination Let us show that Build-KM always terminates. First observe that the depth of recursive
calls is at most by |P | + 1, as the number of places marked by ω along a branch does not decrease,
and since we perform a recursive call only when a place gets marked by ω and was not marked before.
Moreover, the branching degree of the tree is bounded by the number |T | of transitions. Thus, by König’s
lemma, an infinite tree would contain an infinite branch. We rule out this possibility by a classical
wqo argument: if there were an infinite branch in the tree computed by Build-KM(N ,m0), then there
would be two nodes n1 along the branch n2 (where n1 is an ancestor of n2) s.t. λ(n1) � λ(n2) and
effect(n1  n2) � 0. Since the depth of recursive calls is bounded, we can assume, w.l.o.g., that n1

4Although this differs from classical presentations of the Karp & Miller technique, we have retained it because it simplifies the
proofs of correctness.
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and n2 have been built during the same recursive call, hence λ(n1) ≺ λ(n2) is not possible, because this
would trigger an acceleration, create an extra ω and start a new recursive call. Thus, λ(n1) = λ(n2), but
in this case the algorithm stops developing the branch (line 5).

Proposition 3.1. For all ωPN N and marking m0, Build-KM(N ,m0) terminates.

Proof:
The proof is by contradiction. Assume Build-KM(N ,m0) does not terminate. First observe that the
recursion depth is always bounded: since a recursive call is performed only when a new ω has been
created, the recursion depth is, at any time, at most equal to |P |+ 1, where P is the set of places of N

Thus, if Build-KM(N ,m0) does not terminate, it is necessarily because the main while loop does
not terminate (the other loop of the algorithm is the forall starting in line 6, which always execute at
most |T | iterations, where T is the set of transitions of N ). In this loop, one node is removed from U

at each iteration. Since the algorithm builds a tree, a node that has been removed from U will never be
inserted again in U. Hence, the tree T built by Build-KM(N ,m0) is infinite.

By König’s lemma, and since T is finitely branching, it contains an infinite path π. Since the recur-
sion depth is bounded, π can be split into a finite prefix π1 and an infinite suffix π2 s.t. all the nodes in
π2 have been built during the same recursive call.

Let us assume π2 = n0, n1, . . . , nm, . . . Since � is a well-quasi-ordering on ω-markings, there are
k and ` s.t. 0 ≤ k < ` and λ(nk) � λ(n`). Clearly, λ(nk) = λ(n`) is not possible because of the
test of line 5 that prevents the development of n` in this case. Thus, λ(nk) ≺ λ(n`). This means that,
for all p ∈ P : λ(nk)(p) ≤ λ(n`)(p), and that there exists p s.t. λ(nk)(p) < λ(n`)(p). Let p< be
such a place. By definition of the Post function, and of the acceleration (line 19), the only possibility
is that λ(n`)(p

<) = ω 6= λ(nk)(p
<). However, in this case, when λ(n`) is returned by Post, a new

recursive call is triggered, which contradicts the hypothesis that n` and nk have been built during the
same recursive call, which contradicts the assumption. ut

Then, following the intuition that we have sketched at the beginning of the section, we show that KM
is sound (Lemma 3.2) and complete (Lemma 3.6). We first establish these results assuming that the ωPN
N given as parameter is an ωOPN, then prove that the results extend to the general case of ωPN.

Soundness To establish soundness of our algorithm, we show that, for every path n0, . . . , nk in the tree
returned by Build-KM(N ,m0), and for every target marking m ∈ γ(λ(nk)), we can find an execution
ofN reaching a markingm′ ∈ γ(nk) that coversm. This implies that, if λ(nk)(p) = ω for some p, then,
we can find a family of executions that reach a marking in γ(nk) with an arbitrary number of tokens in
p. For instance, consider the path n1, n2, n3 in T ′1 (Fig. 2), and let m = 〈0, 2, 4〉. Then, a corresponding
execution is 〈1, 0, 0〉 t1−→ 〈0, 4, 0〉 t2−→ 〈0, 3, 2〉 t2−→ 〈0, 2, 4〉. Remark that the execution is not necessarily
the sequence of transitions labeling the path in the tree: in this case, we need to iterate t2 to transfer
tokens from p2 to p3, which is summarised in one edge (n2, n3) in T1, by the acceleration.

Thus, the soundness property is given by the following lemma:

Lemma 3.2. Let N be an ωOPN, let m0 be an ω-marking and let T be the tree returned by
Build-KM(N ,m0). Let π = n0, . . . , nk be a stuttering path in T , and let m be a marking in γ(λ(nk)).
Then, there exists an execution ρπ = m0

t1−→ m1 · · ·
t`−→ m` of N s.t. m` ∈ γ(λ(nk)), m` � m
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and m0 ∈ γ(λ(n0)). Moreover, when for all 0 ≤ i ≤ j ≤ k: nbω (ni) = nbω (nj), we have:
t1 · · · t` = µ(π).

To prove Lemma 3.2, we need auxiliary results and definitions. First, we state the place monotonicity
property of ωPN. Let m1 and m2 be two markings, and let P ′ ⊆ P be a set of places s.t. m2 �P ′ m1.
Let σ be a sequence of transitions and let m3 be a marking5 s.t. m1

σ−→ m3. Then, there is m4 s.t.
m2

σ−→ m4 and m4 �P ′ m3. Also, when no ω’s are introduced in the labels of the nodes, the sequence
of labels along a branch coincides with the effect of the transitions labelling this branch. Formally:

Lemma 3.3. Let N be an ωOPN, let m0 be an ω-marking and let T be the tree returned by
Build-KM(N ,m0). Let n1, n2 be two nodes of T s.t. (n1, n2) ∈ E+. Then, for all p s.t. λ(n1)(p) 6= ω
and λ(n2)(p) 6= ω, we have: λ(n2)(p) = λ(n1)(p) + effect(σ)(p).

The next technical definitions allows us to characterise when a sequence of transition is firable from
a given marking. Let σ = t1 · · · tn be a sequence of transitions of an ωOPN, s.t. for all 1 ≤ i ≤ n − 1,
for all p ∈ P : O(ti)(p) 6= ω. Let m be a marking and let p be a place. Then, we let AllowsFiring be the
predicate s.t. AllowsFiring(σ,m, p) is true iff: ∀1 ≤ i ≤ n : m(p) + effect(t1 · · · ti−1)(p) ≥ I(ti)(p).
Note that σ is firable from m iff for all p ∈ P : AllowsFiring(σ,m, p). We extend the definition of
AllowsFiring to sequences of transitions containing one ω-output-transition. Let σ = t1 · · · tn be a
sequence of transitions, let p be a place, and let 1 ≤ j ≤ n be the least position s.t. O(tj)(p) = ω. Then
AllowsFiring(σ,m, p) holds iff AllowsFiring(t1 · · · tj ,m, p) holds. Again, σ is firable from m iff for all
p ∈ P : AllowsFiring(σ,m, p). Indeed, AllowsFiring(t1 · · · tj ,m, p) ensures that, when firing σ from m,
p will never be negative along t1 · · · tj . Moreover, tj can create an arbitrary large number of tokens in p,
since O(tj)(p) = ω, which allows to ensure that p will never be negative along tj+1 · · · tn. Given this
definition of AllowsFiring it is easy to observe that: (i) m(p) ≥ I(σ)(p) implies AllowsFiring(σ,m, p);
and (ii) AllowsFiring(σ,m, p) and effect(σ)(p) ≥ 0 implies AllowsFiring(σK ,m, p) for all K ≥ 1.

Lemma 3.4. Let N be an ωOPN, let m0 be an ω-marking, and let T be the tree returned by
Build-KM(N ,m0), let e = (n1, n2) be an edge of T and let m be a marking in γ(λ(n2)). Then,
there are m1 ∈ γ(λ(n1)), m2 ∈ γ(λ(n2)) and a sequence of transitions σπ of N s.t. m1

σπ−→ m2 and
m2 � m. Moreover, when nbω (λ(n1)) = nbω (λ(n2)), σπ = µ(e) is such a sequence of transitions.

Proof:
Edges are created by Build-KM in line 15 only. Thus, by the test of the forall loop (line 6), and since
we are considering an ωOPN:

λ(n1) ≥ I(µ(e)) (1)

Moreover, when creating an edge (n, n′) (line 15), n′ is either a fresh node s.t. λ(n′) is the ω-marking re-
turned by Post(N , λ(n), t), or n′ is the root of the subtree T ′ returned by the recursive call
Build-KM(N ,m′), with µ(n, n′) = t in both cases. However, in the latter case, the root of T ′ is
m′, i.e., the marking returned by Post(N , λ(n), t) too. Since this holds for all edges, we conclude that
λ(n2) is the ω-marking m′ returned by Post(N , λ(n1), µ(e)). Considering the definition of the Post

function, we see that m′ is either λ(n1) − I(t) + O(t) (when the condition of the if in line 18 is not

5 Note that due to the ω’s, the effect of σ is now non-deterministic, and there can be several such m3.
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satisfied), or the result mω of an acceleration (when the condition of the if in line 18 is satisfied). We
consider these two cases separately.
CASE A: the condition of the if in line 18 has not been satisfied (i.e., no acceleration has occurred).
Then, λ(n2) is the marking m′ computed in line 17:

λ(n2) = λ(n1)− I(µ(e)) +O(µ(e)) (2)

We let m1 be the marking s.t. for all places p ∈ P : (i) m1(p) = λ(n1)(p) if λ(n1)(p) 6= ω; and
(ii) m1(p) = I(µ(e))(p) + m(p) otherwise. And we let m2 be the marking s.t., for all places p ∈
P : (i) m2(p) = m1(p) + O(µ(e))(p) − I(µ(e))(p) if O(µ(e))(p) 6= ω; and (ii) m2(p) = m1(p) −
I(µ(e))(p) +m(p) otherwise. Finally, we let: σπ = µ(e).

Let us show thatm1,m2 and σπ = µ(e) satisfy the lemma. First, we observe thatm1 ∈ γ(λ(n1)), by
definition. Then, we further observe that there are only four possibilities regarding the possible values of
λ(n1)(p), λ(n2)(p) and O(µ(e))(p), as shown in the following table. Indeed, n2 is a successor of n1 in
the tree, so ω(n2) ⊇ ω(n1). Moreover, λ(n2)(p) = ω 6= λ(n1)(p) holds for some p iff O(µ(e))(p) = ω,
as we have assumed that the condition of the if in line 18 has not been satisfied. Those four cases are
summarised in the table below, with the values of m1(p) and m2(p), obtained by definition:

Case λ(n1)(p) λ(n2)(p) O(µ(e))(p) m1(p) m2(p)

1 = ω = ω = ω I(µ(e))(p) +m(p) 2×m(p)

2 = ω = ω 6= ω I(µ(e))(p) +m(p) m(p) +O(µ(e))(p)

3 6= ω = ω = ω λ(n1)(p) λ(n1)(p)− I(µ(e))(p) +m(p)

4 6= ω 6= ω 6= ω λ(n1)(p) λ(n1)(p) +O(µ(e))(p)− I(µ(e))(p)

To prove that m2 ∈ γ(λ(n2)), we must show that m2(p) = λ(n2)(p) for all p s.t. λ(n2)(p) 6= ω,
which corresponds only to case 4. In this case, by the table above, we have m2(p) = λ(n1)(p) +
O(µ(e))(p)− I(µ(e))(p), which is equal to λ(n2)(p) by (2)

Then, it remains to show that m1
µ(e)−−→ m2. First, we show that, µ(e) is firable from m1, i.e. that for

all p ∈ P : m1(p) ≥ I(µ(e))(p). In case 1 and 2, we have m1(p) = I(µ(e))(p) + m(p) ≥ I(µ(e))(p).
In cases 3 and 4, we have m1(p) = λ(n1)(p), with λ(n1)(p) ≥ I(µ(e))(p) by (1). Thus, µ(e) is firable
from m1. Then, we must show that m2 can be obtained as a successor of m1 by µ(e). In cases 1 and 3,
the effect of µ(e) is to remove I(µ(e))(p) tokens from p and to produce an arbitrary number K of tokens
in p. Hence, in case 1, by firing µ(e) from m1, we obtain I(µ(e))(p) + m(p) − I(µ(e))(p) + K =
m(p) +K tokens in p. In case 3, by firing µ(e) from m1, we obtain λ(n1)(p)− I(µ(e))(p) +K tokens
in p. In both cases, by letting K = m(p), we obtain m2(p). In cases 2 and 4, the effect of µ(e) on
place p is equal to O(µ(e))(p) − I(µ(e))(p). Hence, in case 2, by firing µ(e) from m1, we obtain
I(µ(e))(p) +m(p)− I(µ(e))(p) +O(µ(e))(p) = m(p) +O(µ(e))(p) tokens in p. In case 4, by firing
µ(e) from m1, we obtain λ(n1)(p) − I(µ(e))(p) + O(µ(e))(p) tokens in p. In both cases, these values
correspond exactly to m2(p).

We conclude this case by observing that nbω (λ(n1)) = nbω (λ(n2)) implies that no acceleration has
been performed, which is the present case. We have thus shown that when nbω (λ(n1)) = nbω (λ(n2)),
σπ = µ(e) is a sequence of transitions that satisfies the lemma.

CASE B: the condition of the if in line 18 has been satisfied (an acceleration has occurred). Note
that in this case, n1 is the node called n in the condition of the if, and µ(e) is the transition called t in the
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same condition. Let σ be the sequence of transitions labelling the path from n to n1. Let PAcc denote the
set of places: {p | effect(σ(p)) > 0 ∧ λ(n2)(p) 6= ω ∧O(µ(e))(p) 6= ω}. Let K = maxp∈PAcc{m(p)}
and let σπ be the sequence of transitions µ(e)

(
σ · µ(e)

)K . From those definitions, only the following
cases are possible, for all places p:

case λ(n)(p) λ(n1)(p) λ(n2)(p) effect(σ)(p) effect(µ(e))(p) Remark

1 ω ω ω ∈ Z ∪ {ω} ∈ Z ∪ {ω}
2 6= ω 6= ω 6= ω 6= ω 6= ω

3 6= ω 6= ω ω 6= ω ω

4 6= ω 6= ω ω 6= ω 6= ω effect(σ · µ(e))(p) > 0

Only those four cases are possible because n is an ancestor of n1, which is itself an ancestor of n2.
Moreover, by construction, nbω (n) = nbω (n1), since those two nodes have been computed during the
same recursive call. Thus, the occurrence of a fresh ω can only appear between n1 and n2, either because
effect(µ(e))(p) = ω (case 3), or because we have performed an acceleration (case 4). Note that the latter
only occurs when effect(σ · µ(e))(p) > 0.

Let us next define the marking m1, as: (i) m1(p) = λ(n1)(p) if λ(n1)(p) 6= ω; and (ii) m1(p) =
I(σπ)(p) + m(p) otherwise; where I(σπ)(p) denotes

∑n
i=1 I(ti)(p) for σπ = t1, . . . , tn. Observe that,

by definition: m1 ∈ γ(λ(n1)). Then, let us prove that σπ is firable from m1. First observe that, if p is a
place s.t. λ(n1)(p) = ω, then AllowsFiring(σπ,m1, p) holds, because, in this case, m1(p) ≥ I(σπ)(p),
by def. of m1. Then, assume p is a place s.t. λ(n1)(p) 6= ω. In this case, by definition, m1(p) = λ(n1).
First observe that, by construction, and since we consider ωOPN (see line 6 of the algorithm):

∀p : λ(n1)(p) ≥ I(µ(e))(p) (3)

Let us now consider all the possible cases, which are cases 2, 3 and 4 from the table above (case 1 cannot
occur since we have assumed that λ(n1)(p) 6= ω):

• In case 2, since the condition of the if (line 18) is satisfied, we know that effect(σ · µ(e))(p) ≥
0. Since λ(n)(p) 6= ω, and λ(n1)(p) 6= ω, we can apply Lemma 3.3, and conclude that:
λ(n2)(p) = λ(n)(p) + effect(σ · µ(e))(p) = λ(n)(p) + effect(σ)(p) + effect(µ(e))(p) =
λ(n1)(p) + effect(µ(e))(p). Thus:

λ(n1)(p) + effect(µ(e))(p) ≥ λ(n)(p) (4)

since effect(σ · µ(e))(p) ≥ 0. By applying CASE A (above) iteratively along the branch from n
to n1, we have AllowsFiring(σ, λ(n), p). Hence, AllowsFiring(σ, λ(n1)(p) + effect(µ(e))(p), p)
holds too, by (4). Finally, by (3), we conclude that AllowsFiring(µ(e) · σ, λ(n1)(p), p) holds.
However, effect(µ(e) · σ)(p) = effect(σ · µ(e))(p) ≥ 0. Thus, since µ(e) · σ has a positive
effect on p, we conclude that AllowsFiring

(
(µ(e) · σ)K , λ(n1)(p), p

)
holds too, for all K ≥ 1.

Finally, since effect
(
(µ(e) · σ)K

)
(p) ≥ 0, we conclude that λ(n1)(p) + effect

(
(µ(e) · σ)K

)
≥

λ(n1)(p). Thus, by (3), λ(n1)(p) + effect
(
(µ(e) · σ)K

)
≥ I(µ(e)) and we can thus fire µ(e)

once again after firing (µ(e) ·σ)K . Hence, AllowsFiring
(
(µ(e) · σ)K · µ(e), λ(n1), p

)
holds, with

σπ = (µ(e) · σ)K · µ(e).

• In case 3: by (3), sinceO(µ(e))(p) = ω, and since µ(e) is the first transition of σπ, we immediately
conclude that AllowsFiring(σπ, λ(n1), p).
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• In case 4, we can adapt the reasoning of case 2 as follows. First remember, that, in case 4,
effect(σ · µ(e))(p) > 0. Since λ(n)(p) 6= ω, and λ(n1)(p) 6= ω, we can apply Lemma 3.3, and
conclude that λ(n1)(p) = λ(n)(p)+effect(σ)(p). Thus: λ(n1)(p)+effect(µ(e))(p) = λ(n)(p)+
effect(σ)(p) + effect(µ(e))(p) = λ(n)(p) + effect(σ · µ(e))(p) with effect(σ · µ(e))(p) > 0.
Hence: λ(n1)(p) + effect(µ(e))(p) > λ(n)(p). This implies (4), and we can reuse the arguments
of case 2 to show that AllowsFiring (σπ, λ(n1), p) holds in the present case too.

Thus, for all p s.t. λ(n1)(p) 6= ω: AllowsFiring(σπ, λ(n1), p) holds. However, λ(n1)(p) 6= ω implies
that m1(p) = λ(n1)(p), hence, AllowsFiring(σπ,m1, p) holds in those cases. Thus, we conclude that
AllowsFiring(σπ,m1, p) holds for all places p, and thus, that σπ is firable from m1.

To conclude the proof let us build a markingm2 that respects the conditions given in the statement of
the lemma. Let m be a marking s.t. m1

σπ−→ m. We know that such a marking exists since σπ is firable
from m1. We first observe that, by Lemma 2.4:

∀p s.t. effect(σπ)(p) 6= ω : m(p) = m1(p) + effect(σπ)(p) (5)

From m, we define the marking m2 s.t. (i) m2(p) = m(p) if effect(σπ)(p) 6= ω; and (ii) m2(p) =
max {m(p),m(p)} otherwise. Clearly, m2 �P ′ m, for P ′ = {p | effect(σπ)(p) = ω. Hence, by
Lemma 2.5, m1

σπ−→ m2 holds. Let us conclude the proof by showing that m2 ∈ γ(λ(n2)), and that
m2 ≥ m, as requested. Since m has been assumed to be in γ(λ(n2)) too, it is sufficient to show that for
all place p: (i) λ(n2)(p) = ω implies m2(p) ≥ m, and (ii) λ(n2)(p) 6= ω implies m2(p) = λ(n2)(p).

Thus, we consider each place p separately, by reviewing the four cases given in the table above:

• In case 1, m1(p) = I(σπ)(p) + m(p) and λ(n2)(p) = ω. Let us show that m2(p) ≥ m(p). We
consider two further cases:

1. either effect(σπ)(p) 6= ω. In this case:

m2(p) = m(p) By def of m2

= m1(p) + effect(σπ)(p) By (5)

= I(σπ)(p) + effect(σπ)(p) +m(p) By def. of m1

≥ m(p)

2. or effect(σπ)(p) = ω. Then, m2(p) ≥ m(p) by def. of m2.

• In case 2, we know that effect(µ(e))(p) 6= ω and effect(σ)(p) 6= ω, hence effect(σ · µ(e)) 6= ω
and effect(σπ) 6= ω either. Then:

m2(p) = m(p) By def. of m2

= m1(p) + effect(σπ)(p) By (5)

= λ(n1)(p) + effect(σπ)(p) By def of m1

= λ(n2)(p) Lemma 3.3 and effect(σ · µ(e)) 6= ω

• In case 3, λ(n2)(p) = ω and effect(σπ)(p) = ω too. Hence, m2(p) ≥ m(p) by def. of m2.
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• In case 4, λ(n2)(p) = ω again, and m1(p) = λ(n1)(p), by def. of m1. Moreover, we have
effect(σπ)(p) 6= ω, because effect(σ)(p) 6= ω and effect(µ(e))(p) 6= ω. Finally, since in
case 4, we have effect(σ · µ(e))(p) > 0, and since σπ = µ(e)

(
σ · µ(e)

)K , we conclude that
effect(σπ)(p) ≥ K − effect(µ(e))(p). Thus:

m2(p) = m(p) By def. of m2

= m1(p) + effect(σπ)(p) By (5)

≥ m1(p) +K − effect(µ(e))(p) See above

= m1(p) +K − I(µ(e))(p) +O(µ(e))(p) Def. of effect

≥ K +m1(p)− I(µ(e))(p)

≥ K + λ(n1)(p)− I(µ(e))(p) By def. of m1

≥ K By (3)

≥ m(p) p ∈ PAcc and by def of σπ

ut

We are now ready to prove the soundness result stated in Lemma 3.2:

Proof:
We build, by induction on the length k of the path in the tree, a corresponding execution of N . The
induction works backward, starting from the end of the path.
Base case, k = 0. Since nk = n0, we can take m0 = m, which clearly satisfies the Lemma since
m ∈ λ(nk) = λ(n0).
Inductive case, k > 0. The induction hypothesis is that there are a sequence of transitions σ and two
markings m1 and mk s.t. m1

σ−→ mk, m1 ∈ γ(λ(n1)), mk ∈ γ(λ(nk)), and mk ≥ m. In the case where
(n0, n1) is not an edge of T (i.e., n1 is an ancestor of n0), we know that λ(n0) = λ(n1) by definition of
stuttering and let ρπ = m1

σ−→ mk. Otherwise, we can apply Lemma 3.4, and conclude that there are σ′,

m0 and m′1 s.t. m0
σ′−→ m′1, m0 ∈ γ(λ(n0)), m′1 ∈ γ(λ(n1)) and m′1 � m1. Since m′1 � m1, σ is also

firable fromm′1. Letm′k = m′1+(mk−m1). Clearly,m0
σ′−→ m′1

σ−→ m′k. Moreover,m′k � mk � m, by
monotonicity. Let us show thatm′k ∈ γ(λ(nk)). Sincem′1 andm1 are both in γ(λ(n1)): m1(p) = m′1(p)
for all p s.t. λ(n1)(p) 6= ω. Thus, by strong monotonicity, we conclude that mk(p) = m′k(p) for all p
s.t. λ(n1)(p) 6= ω. However, for all places p, λ(nk)(p) 6= ω implies λ(n1)(p) 6= ω, as the number of
ω’s increase along a path in the tree. Thus we conclude that mk(p) = m′k(p) for all p s.t. λ(nk)(p) 6= ω.
Since mk(p) = λ(nk)(p) for all p s.t. λ(nk)(p) 6= ω because mk ∈ γ(λ(nk)) by induction hypothesis,
we conclude that m′k ∈ γ(λ(nk)) too. Thus, m0, m′k and σ′ · σ fulfill the statement of the lemma.

Finally, observe that, when all the nodes along the path π have the same number of ω’s, Lemma 3.4
guarantees that µ(π) can be chosen for the sequence of transitions σ. ut

Completeness Proving completeness amounts to showing that every execution (starting from m0) of
an ωPN N is witnessed by a stuttering path in Build-KM(N ,m0). It relies on the following property:

Lemma 3.5. Let N be an ωOPN, let m0 be an ω-marking, and let T be the tree returned by
Build-KM(N ,m0). Then, for all nodes n of Build-KM(N ,m0): (i) either n has no successor in
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the tree and has an ancestor n s.t. λ(n) = λ(n); or (ii) the set of successors of n corresponds to all the
→ω possible successors of λ(n), i.e.: {µ(n, n′) | (n, n′) ∈ E} = {t | λ(n)

t−→ω}. Moreover, for each n′

s.t. (n, n′) ∈ E and µ(n, n′) = t: λ(n′) � λ(n) + effect(t).

Proof:
Observe that each time a node is created, it is inserted into U, or a recursive call is performed on this
node. In both cases, the node will eventually be considered in line 5. If the condition of the if in line 5
is not satisfied, n has an ancestor n s.t. λ(n) = λ(n). Otherwise, all transitions t that are firable from
λ(n) are considered in the loop in lines 6 onward, and a corresponding edge (n, n′) with µ(n, n′) = t is
added to the tree in line 15. The label λ(n′) of this node is either λ(n)+effect(t), or a�-larger marking,
in the case where an acceleration has been performed during the Post, in line 19. Thus in both cases,
λ(n′) � λ(n) + effect(t). The algorithm terminates because U has become empty. Thus, all the nodes
that have eventually been constructed by the algorithm fall into these two cases. Hence the Lemma. ut

We can now state the completeness property:

Lemma 3.6. Let N be an ωOPN with set of transitions T , let m0 be an initial marking and let m0
t1−→

m1
t2−→ · · · tn−→ mn be an execution of N . Then, there are a stuttering path π = n0, n1, . . . , nk in

Build-KM(N ,m0) and a monotonic increasing mapping h : {1, . . . , n} 7→ {0, . . . , k} s.t.: µ(π) =
t1t2 · · · tn and mi � λ(nh(i)) for all 0 ≤ i ≤ n.

Proof:
The proof is by induction on the length of the execution.
Base case: n = 0 We let h(0) = 0. By construction λ(n0) = m0, hence the lemma.
Inductive case: n > 0 The induction hypothesis is that there are a path π = n0, . . . n` and a mapping

h : {0, . . . , n− 1} 7→ {0, . . . , `} satisfying the lemma for the execution prefix m0
t1−→ m1

t2−→ · · · tn−1−−−→
mn−1. By Lemma 3.5, we consider two cases for n`. The first case is when the set of successors of
n` corresponds to the set of all transitions that are firable from λ(n`). Since, by induction hypothesis,
n` � mn−1, and since tn is firable frommn−1, we conclude that tn is firable from λ(n`) by monotonicity.
Hence, n` has a successor n s.t. µ(n`, n) = tn. Still by Lemma 3.5, λ(n) � λ(n`) + effect(tn) �
mn−1 + effect(tn) � mn. Hence, we let n`+1 = n, and h(n) = ` + 1. The second case is when
the set of successors of n` is empty. In this case, by Lemma 3.5, there exists an ancestor n of n` s.t.
λ(n) = λ(n`). Let n`+1 be such a node. Moreover, as n`+1 6= n`, and n`+1 is an ancestor of n`,
n`+1 must have at least one successor. Hence, by Lemma 3.5, n`+1 is fully developed, and we can
apply the same reasoning as above to conclude that there is a successor n′ of n`+1 s.t. λ(n′) � mn and
µ(n`+1, n

′) = tn. Let n`+2 be such a node. We conclude by letting h(n) = `+ 2. ut

3.3. From ωOPN to ωPN

We have shown completeness and soundness of the Build-KM algorithm for ωOPN. Let us show that
each ωPNN can be turned into an ωOPN remIω(N ) that (i) terminates iffN terminates and (ii) that has
the same coverability sets as N . The ωOPN remIω(N ) is obtained from N by replacing each transition
t ∈ T by a transition t′ ∈ T ′ s.t. O(t′) = O(t) and I(t′) = {I(t)(p) ⊗ p | I(t)(p) 6= ω}. Intuitively,
t′ is obtained from t by deleting all ω input arcs. Since t′ always consumes less tokens than t does, the
following is easy to establish:
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Lemma 3.7. Let N be an ωPN. For all executions m0, t
′
1,m1, . . . , t

′
n,mn of remIω(N ):

m0, t1,m1, . . . , tn,mn is an execution of N . For all finite (resp. infinite) executions m0, t1,m1, . . . ,
tn,mn (m0, t1,m1, . . . , tj ,mj , . . .) ofN , there is an execution m0, t

′
1,m

′
1, . . . , t

′
n,m

′
n (m0, t1,m

′
1, . . . ,

tj ,m
′
j , . . .) of remIω(N ), s.t. mi � m′i for all i.

Proof:
The first point follows immediately from the definition of remIω(N ) and from the fact that consuming 0
tokens in each place p s.t. I(ti)(p) = ω is a valid choice when firing each transition ti inN . The second
point is easily shown by induction on the execution, because firing each ti produces the same amount
of tokens that t′i; consumes the same amount of token as each t′i in all places s.t. I(ti)(p) 6= ω, and
consumes, in each place p s.t. I(ti)(p) = ω a number of tokens that is larger than or equal to the number
of tokens consumed by t′i. ut

Intuitively, this means that, when solving coverability, (place) boundedness or termination on an
ωPN N , we can analyse remIω(N ) instead, because N terminates iff remIω(N ) terminates, and re-
moving the ω-labeled input arcs from N does not allow to reach higher markings. Finally, we ob-
serve that, for all ωPN N , and all initial marking m0: the trees returned by Build-KM(N ,m0) and
Build-KM (remIω(N ,m0)) respectively are isomorphic6. This is because we have defined c− ω to be
equal to c: applying this rule when computing the effect of a transition t (line 17), is equivalent to com-
puting the effect of the corresponding t′ in remIω(N ), i.e. letting I(t′)(p) = 0 for all p s.t. I(t)(p) = ω.
Thus, we can lift Lemma 3.2 and Lemma 3.6 to ωPN. This establish correctness of the algorithm for the
general ωPN case.

3.4. Applications of the Karp & Miller tree

With these results we conclude that the Karp & Miller tree can be used to compute a coverability set and
to decide termination of ωPN.

Theorem 3.8. Let N be an ωPN with initial marking m0, and let T = 〈N,E, λ, µ, n0〉 be the tree
returned by Build-KM(N ,m0). Then: (i) λ(N) is a coverability set ofN and (ii)N does not terminate
iff T contains an ω-maximal self-covering stuttering path.

Proof:
Point (i) follows from Lemma 3.2 (lifted to ωPN). Let us now prove both directions of point (ii).

First, we show that if Build-KM(N ,m0) contains an ω-maximal self-covering stuttering path, then
N admits a self-covering execution from m0. Let n0, . . . , nk, nk+1, . . . , n` be an ω-maximal self-
covering stuttering path, and assume that effect(nk+1, . . . , n`) ≥ 0. Let us apply Lemma 3.2 (lifted

to ωPN), by letting m = 0 and π = π2, and let m1 and m2 be markings s.t. m1
µ(π2)−−−→ m2. The

existence of m1 and m2 is guaranteed by Lemma 3.2 (lifted to ωPN), because all the nodes along π2
have the same number of ω’s as we are considering an ω-maximal self-covering stuttering path. Since

6That is, if Build-KM(N ,m0) returns 〈N,E, λ, µ, n0〉 and Build-KM (remIω(N ,m0)) returns〈N ′, E′, λ′, µ′, n′0〉, then,
there is a bijection h : N 7→ N ′ s.t. (i) h(n0) = n′0, (ii) for all n ∈ N : λ(n) = λ(h(n)), (iii) for all n1, n2 in N :
(n1, n2) ∈ E iff (h(n1), h(n2)) ∈ E′, (iv) for all (n1, n2) ∈ E: µ(n1, n2) = µ′(h(n1), h(n2)).
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effect(π2) is positive, so is effect(µ(π2)). Thus, there exists7 m′2 s.t. m1
µ(π2)−−−→ m′2 and m′2 � m1. By

invoking Lemma 3.2 (lifted to ωPN) again, letting π = π1 and m = m1, we conclude to the existence
of a sequence of transitions σ, a marking m0 and a marking m′1 � m1 s.t. m0

σ−→ m′1. Since m′1 � m1,

µ(π2) is again firable from m′1. Let m2 = m2 + m′1 − m1. Clearly, m′1
µ(π2)−−−→ m2, with m2 � m′1.

Hence, m0
σ−→ m′1

µ(π2)−−−→ m2 is a self-covering execution of N .
Second, let us show that, if N admits a self-covering execution from m0, then Build-KM(N ,m0)

contains an ω-maximal self-covering stuttering path. Let ρ = m0
t1−→ m1 · · ·

tn−→ mn be a self-covering
execution and assume 0 ≤ k < n is a position s.t. mk � mn. Let σ1 denote t1, . . . tk and σ2 denote
tk+1, . . . tn. Let us consider the execution ρ′, defined as follows

ρ′ = m0
σ1−→ mk

tk+1−−−→ mk+1 · · ·
tn−→ mn︸ ︷︷ ︸

σ2

tk+1−−−→ mn+1 · · ·
tn−→ m2n−k︸ ︷︷ ︸

σ2

· · ·

· · ·
tk+1−−−→ m(|P |+1)n−|P |k+1 · · ·

tn−→ m(|P |+2)n−(|P |+1)k︸ ︷︷ ︸
σ2

where for all n+ 1 ≤ j ≤ (|P |+ 2)n− (|P |+ 1)k: mj −mj−1 = mf(j)−mf(j−1) with f the function
defined as f(x) =

(
(x − k) mod (n − k)

)
+ k for all x. Intuitively, ρ′ amounts to firing σ1(σ2)|P |+1

(where P is the set of places of N ) from m0, by using, each time we fire σ2, the same effect as the one
that was used to obtain ρ (remember that the effect of σ2 is non-deterministic when ω’s are produced). It
is easy to check that ρ′ is indeed an execution of N , because ρ is a self-covering execution.

Let n0, n1, . . . n` and h be the stuttering path in Build-KM(N ,m0) and the mapping corresponding
to ρ′ (and whose existence is established by Lemma 3.6). Since, mk � mn, effect(tk+1 · · · tn) ≥ 0 and
by Lemma 3.6 (lifted to ωPN), all the following stuttering paths of the form n0, . . . , nh(j×n−(j−1)×k),
for 1 ≤ j ≤ |P | + 2, are self-covering. Let us show that one of them is ω-maximal, i.e. that there is
1 ≤ j ≤ |P | + 1 s.t. nbω

(
nh(jn−(j−1)k)

)
= nbω

(
nh((j+1)n−jk)

)
. Assume it is not the case. Since the

number of ω’s can only increase along a stuttering path, this means that

0 ≤ nbω
(
nh(n)

)
< nbω

(
nh(2n−k)

)
< nbω

(
nh(3n−2k)

)
< nbω

(
nh((|P |+2)n−(|P |+1)k)

)
However, this implies that nbω

(
nh((|P |+2)n−(|P |+1)k)

)
> |P |, which is not possible as P is the set

of places of N . Hence, we conclude that there exists an ω-maximal self-covering stuttering path in
Build-KM(N ,m0). ut

4. From ωPN to plain PN

Let us show that we can, from any ωPNN , build a plain PNN ′ whose set of reachable markings allows
us to recover the reachability set of N . This construction allows us to solve reachability, coverability
and (place) boundednes using algorithms on Petri nets [14, 15, 24, 27]. The idea of the construction is
depicted in Fig. 4, and can be outlined as follows. A transition t in the ωPN is simulated in three steps

7 Note that although effect(µ(π2)) � 0, we have no guarantee that m2 � m1, as we could have effect(µ(π2)) = ω for some
p, and maybe the amount of tokens that has been produced in p by µ(π2) to yield m2 does not allow to have m2(p) ≥ m1(p).
However, in this case, it is always possible to reach a marking with enough tokens in p to coverm1(p), since effect(µ(π2)) = ω.
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Figure 4. Transforming an ωPN into a plain PN.

in the PN. First, t′ fires, which (i) moves a token from the global lock lockg to the local lock lockt and
(ii) consumes the same fixed amount of tokens as t, i.e., if It(p) 6= ω, then, t′ consumes It(p) tokens in
p, for all p. Once t′ has fired, all transitions are blocked but the tqi−ω and tpi+ω transitions, that can be fired
an arbitrary number of times to simulate the ω-arcs of t. Finally, tend moves the lock back to lockg, and
produces Ot(p) tokens in all p s.t. Ot(p) 6= ω.

Formally, we turn the ωPN N = 〈P, T,m0〉 into a plain PN N ′ = 〈P ′, T ′,m′0〉 using the following
procedure. Assume that T = Tplain ] Tω, where Tω is the set of ω-transitions of N . Then:

1. We add to the net one place (called the global lock) lockg, and for each ω-transition t, one place
lockt. That is, P ′ = P ∪ {lockg} ∪ {lockt | t ∈ Tω}.

2. Each transition t in N is replaced by a set of transitions Tt in N ′. In the case where t is a plain
transition, Tt contains a single transition that has the same effect as t, except that it also tests
for the presence of a token in lockg. In the case where t is an ω-transition, Tt is a set of plain
transitions that simulate the effect of t, as in Fig. 4. Formally, T ′ = ∪t∈TTt, where the Tt sets are
defined as follows. If t is a plain transition, then Tt = {t′}, where, I(t′) = I(t) ∪ {lockg} and
O(t′) = O(t) ∪ {lockg}. If t is an ω-transition, then: Tt = {t′, tend} ∪ {tp−ω | I(t)(p) = ω} ∪
{tp+ω | O(t)(p) = ω} where I(t′) = I(t) + {lockg}; O(t′) = I(tend) = {lockt}; O(tend) =
{lockg} + O(t). Furthermore, for all p s.t. I(t)(p) = ω: I(tp−ω) = {p, lockt} and O(tp−ω) =
{lockt}. Finally, for all p s.t. O(t)(p) = ω: I(tp+ω) = {lockt} and O(tp−ω) = {p, lockt}.

3. We let f be the function that associates each marking m of N to the marking f(m) of N ′ s.t.
m′(lockg) = 1; for all p ∈ P : m′(p) = m(p); and for all p 6∈ P ∪ {lockg}: m′(p) = 0. Then, the
initial marking of N ′ is f(m0).

Lemma 4.1. Let N be an ωPN and let N ′ be its corresponding PN. Then m ∈ Reach(N ) iff f(m) ∈
Reach(N ′).

Since the above construction can be carried out in polynomial time, the complexities for reachability
[19, 20], (place) boundedness and coverability [22] for PNs carry on to ωPN:

Corollary 4.2. Reachability for ωPN is decidable and EXPSPACE-hard. Coverability, boundedness and
place boundedness for ωPN are EXPSPACE-c.
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This justifies the result given in Table 1 for reachability, coverability and (place) boundedness, for ωPN.
From our point of view, this translation from ωPN to plain Petri nets does not lower the interest of the

ωPN model. Indeed, as argued in the introduction, ω-arcs are a natural way of modeling the creation and
consumption of a non-deterministically chosen amount of resources (processus for instance). Moreover,
the translation incurs a (polynomial) blow-up in the number of places and transitions. But, most of all,
the above construction does not preserve termination, which motivates, in the first place, the introduction
of ωPN (recall the example from the introduction). For instance, assume that the leftmost part of Fig. 4
is an ωPNN = 〈P, T,m0〉 with m0(q) = 1. Clearly, all executions ofN are finite, while t′(tp1+ω)ω is an
infinite transition sequence that is firable inN ′. However, observe that this infinite transition sequence is
“unfair” in the sense that it never fires tend even though it is enabled infinitely often. Formally, an infinite
transition sequence has finite delay property with respect to sets T1, . . . , Tk ⊆ T of transitions if for every
Tj , either 1) infinitely many transitions of the sequence are from Tj or 2) infinitely many positions of
the sequence disable all transitions in Tj . The problem of checking the existence of a firable infinite
transition sequence with the finite delay property (called the weak fairness problem) is decidable [17].
By setting T1 = {tp1+ω, t

p2
+ω} and T2 = {tend} in the Petri net on the right part of Fig. 4, the termination

problem for ωPN can be reduced to the weak fairness problem for plain Petri nets. However, the proof
of decidability in [17] uses a reduction to the reachability problem, which is not known to be solvable
by Karp & Miller trees. We have seen in Section 3 that Karp & Miller trees can be extended to solve
termination directly on ωPN. Constructing these trees require non-primitive recursive space (and so do all
known algorithms for the reachability problem), but problems solvable by Karp & Miller trees generally
turn out to be in EXPSPACE. Indeed, in the next section we show that the Rackoff technique [22] can be
generalised to ωPN, and prove that termination is EXPSPACE-c for ωPN.

5. Extending the Rackoff technique for ωPN

In this section, we extend the Rackoff technique to ωPN to prove the existence of short self-covering
sequences. For applications of interest, such as the termination problem, it is sufficient to consider
ωOPN, as proved in Lemma 3.7. Hence, we only consider ωOPN in this section. As in Rackoff’s
work [22], the idea here is to use small solutions of linear Diophantine equations to limit lengths of
sequences. As in the work of Brazdil et al. [4], we modify the effect of a sequence of transitions to
ensure that ω-transitions are fired at least once. But the results of [4], proved in the context of games,
can not be used here directly for the termination problem.

As observed in [22], beyond some large values, it is not necessary to track the exact value of markings
to solve some problems. We use threshold functions h : {0, . . . , |P |} → N to specify such large values.
Let nbω (m) = |{p ∈ P | m(p) ∈ N}|.

Definition 5.1. Let h : {0, . . . , |P |} → N be a threshold function. Given an ω-marking m, the markings
[m]h→ω and [m]ω→h are defined as follows:

([m]h→ω)(p) =

{
m(p) if m(p) < h(nbω (m)),

ω otherwise.

([m]ω→h)(p) =

{
m(p) if m(p) ∈ N,
h(nbω (m) + 1) otherwise.
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In [m]h→ω, values that are too high are abstracted by ω. In [m]ω→h, ω is replaced by the corresponding
natural number. This kind of abstraction is formalized in the following threshold semantics.

Definition 5.2. Given an ωPNN , a transition t, an ω-marking m that enables t and a threshold function
h, we define the transition relation t−→h as m t−→h [m+ effect(t)]h→ω.

The transition relation t−→h is extended to sequences of transitions in the usual way. Note that if m t−→h

m′, then ω(m) ⊆ ω(m′). In words, a place marked ω will stay that way along any transition in threshold
semantics.

Let R = max{| effect(t)(p)| | t ∈ T, p ∈ P, effect(t)(p) < ω}. The following proposition says
that ω can be replaced by large enough numbers without disabling sequences. The proof is by a routine
induction on the length of sequences, using the fact that in an ωOPN, any transition can reduce at most
R tokens from a place.

Proposition 5.3. For some ω-markings m1 and m2, suppose m1
σ−→h m2 and ω(m2) = ω(m1). If m′1

is a marking such that m′1 �ω(m1) m1 and m′1(p) ≥ R|σ| for all p ∈ ω(m1), then m′1
σ−→ m′2 such that

m′2 �ω(m2) m2 and m′2(p) ≥ m′1(p)−R|σ|.

Definition 5.4. Given an ω-marking m1 and a threshold function h, an ω-maximal threshold pumping
sequence (h-PS) enabled at m1 is a sequence σ of transitions such that m1

σ−→h m2, effect(σ) ≥ 0 and
ω(m2) = ω(m1).

In the above definition, note that we require effect(σ)(p) ≥ 0 for any place p, irrespective of whether
m1(p) = ω or not.

Definition 5.5. Suppose σ is an ω-maximal h-PS enabled at m1 and σ = σ1σ2σ3 such that m1
σ1−→h

m3
σ2−→h m3

σ3−→h m2. We call σ2 a simple loop if all intermediate ω-markings obtained while firing σ2
from m3 (except the last one, which is m3 again) are distinct from one another.

In the above definition, since m3
σ2−→h m3 and m1

σ1σ3−−−→h m2, one might be tempted to think that σ1σ3
is also an ω-maximal h-PS enabled at m1. This is however not true in general, since there might be some
p ∈ ω(m1) such that effect(σ1σ3)(p) < 0 (which is compensated by σ2 with effect(σ2)(p) > 0). The
presence of the simple loop σ2 is required due to its compensating effect. The idea of the proof of the
following lemma is that if there are a large number of loops, it is enough to retain a few to get a shorter
ω-maximal h-PS.

Lemma 5.6. There is a constant d such that for any ωPNN , any threshold function h and any ω-maximal
h-PS σ enabled at some ω-marking m1, there is an ω-maximal h-PS σ′ enabled at m1, whose length is
at most (h(nbω (m1))2R)d|P |

3
.

Proof:
This proof is similar to that of [22, Lemma 4.5], with some modifications to handle ω-transitions. It is
organized into the following steps. (Step 1) We first associate a vector with a sequence of transitions to
measure the effect of the sequence. This is the step that differs most from that of [22, Lemma 4.5]. The
idea in this step is similar to the one used in [4, Lemma 7]. (Step 2) Next we remove some simple loops
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from σ to obtain σ′′ such that for every intermediate ω-marking m in the run m1
σ−→h m2, m also occurs

in the run m1
σ′′−→h m2. (Step 3) The sequence σ′′ obtained above need not be a h-PS. With the help

of the vectors defined in step 1, we formulate a set of linear Diophantine equations that encode the fact
that the effects of σ′′ and the simple loops that were removed in step 2 combine to give the effect of a
h-PS. (Step 4) Then we use the result about existence of small solutions to linear Diophantine equations
to construct a sequence σ′ that meets the length constraint of the lemma. (Step 5) Finally, we prove that
σ′ is a h-PS enabled at m1.

Step 1: Let Pω ⊆ ω(m1) be the set of places p such that some transition t in σ has effect(t)(p) = ω.
If we ensure that for each place p ∈ Pω, some transition t with effect(t)(p) = ω is fired, we can ignore
the effect of other transitions on p. This is formalized in the following definition of the effect of any
sequence of transitions σ1 = t1 · · · tr. We define the function ∆Pω [σ1] : ω(m1)→ Z as follows.

∆Pω [σ1](p) =


1 p ∈ Pω,∃i ∈ {1, . . . , r} : effect(ti)(p) = ω

0 p ∈ Pω,∀i ∈ {1, . . . , r} : effect(ti)(p) 6= ω∑
1≤i≤r effect(ti)(p) otherwise

Step 2: Let m1
σ−→h m2. From Definition 5.4, we have ω(m2) = ω(m1). From Definition 5.1, we

infer that for any ω-marking m in the run m1
σ−→h m2, m(p) < h(nbω (m1)) for all p ∈ P \ ω(m1).

Now we remove some simple loops from σ to obtain σ′′. To obtain some bounds in the next step, we first
make the following observations on loops. Let |P \ω(m1)| = r1. Suppose π is a simple loop. There can
be at most h(nbω (m1))

r1 transitions in π, so −h(nbω (m1))
r1R ≤ ∆Pω [π](p) ≤ h(nbω (m1))

r1R for
any p ∈ P . Let ~B be the matrix whose set of columns is equal to {∆Pω [π] | π is a simple loop}. There
are at most (h(nbω (m1))

r12R)|P | columns in ~B. We use~b,~b′, . . . to denote the columns of ~B.
Now we remove simple loops from σ according to the following steps. Let ~x0 = 0 be the zero vector

whose dimension is equal to the number of columns in ~B. Begin the following steps with i = 0 and σi =
σ. (a) Think of the first (h(nbω (m1))

|P | + 1)2 transitions of σi as h(nbω (m1))
|P | + 1 blocks of length

h(nbω (m1))
|P |+1 each. (b) There is at least one block in which all ω-markings also occur in some other

block. (c) Let π be a simple loop occurring in the above block. (d) Let σi+1 be the sequence obtained
from σi by removing π. (e) Let ~xi+1 be the vector obtained from ~xi by incrementing ~xi(∆Pω [π]) by 1.
(f) Increment i by 1. (g) If the length of the remaining sequence is more than or equal to (h(nbω (m1))

|P |

+ 1)2, go back to step a. Otherwise, stop.
Let n be the value of i when the above process stops. Let σ′′ = σn and ~x = ~xn. We remove a simple

loop π starting at an ω-marking m only if all the intermediate ω-markings occurring while firing π from
m occur at least once more in the remaining sequence. Hence, for every ω-marking m arising while
firing σ from m1, m also arises while firing σ′′ from m1. We have |σ′′| ≤ (h(nbω (m1))

|P | + 1)2. For
each column ~b of ~B, ~x(~b) contains the number of occurrences of simple loops π removed from σ such
that ∆Pω [π] = ~b.

Step 3: For every p ∈ Pω, we want to ensure that there is some transition t in the shorter h-PS that
we will build, such that effect(t)(p) = ω. For the other places, we want to ensure that the effect of
the shorter h-PS is non-negative. These requirements are expressed in the vector ~d, where ~d(p) = 1 if
p ∈ Pω and ~d(p) = 0 if p /∈ Pω.

Recall that for each column ~b of ~B, ~x(~b) contains the number of occurrences of simple loops π
removed from σ such that ∆Pω [π] = ~b and that σ′′ is the sequence remaining after all removals. Hence,
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∆Pω [σ] = ~B~x + ∆Pω [σ′′]. Since σ is a h-PS and for every p ∈ Pω, there is a transition t in σ such that
effect(t)(p) = ω, we have

∆Pω [σ] ≥ ~d⇒ ~B~x+ ∆Pω [σ′′] ≥ ~d⇒ ~B~x ≥ ~d−∆Pω [σ′′] . (6)

Step 4: We use the following result about the existence of small integral solutions to linear equations
[3], which has been used by Rackoff to give EXPSPACE upper bound for the boundedness problems in
Petri nets [22, Lemma 4.4].

Let d1, d2 ∈ N+, let ~A be a d1 × d2 integer matrix and let ~a be an integer vector of dimension d1.
Let d ≥ d2 be an upper bound on the absolute value of the integers in ~A and ~a. Suppose there is a vector
~x ∈ Nd2 such that ~A~x ≥ ~a. Then for some constant c independent of d, d1, d2, there exists a vector
~y ∈ Nd2 such that ~A~y ≥ ~a and ~y(i) ≤ dcd1 for all i between 1 and d2.

We apply the above result to (6). Each entry of ∆Pω [σ′′] is of absolute value at most (h(nbω (m1))
|P |+

1)2R. Recall that there are at most (h(nbω (m1))
r12R)|P | columns in ~B, with the absolute value of each

entry at most h(nbω (m1))
r1R. There are |P |−r1 rows in ~B. Hence, we conclude that ~x can be replaced

by ~y such that ~B~y ≥ ~d −∆Pω [σ′′] and the sum of all entries in ~y is at most (h(nbω (m1))2R)d
′|P |3 for

some constant d′. This expression is obtained from simplifying

(h(nbω (m1))
r12R)|P |((h(nbω (m1))

|P | + 1)22R)d
′′|P |2

for some constant d′′.
For each column ~b of ~B, let π~b be a simple loop of σ such that ∆Pω [π~b] = ~b. Recall from step

2 that there is some intermediate ω-marking m~b occurring while firing σ′′ from m1 such that m~b is
the ω-marking from which the simple loop π~b is fired in σ. Let i~b be the position in σ′′ where m~b
occurs. Let σ′ be the sequence obtained from σ′′ by inserting ~y(~b) copies of π~b into σ′′ at the posi-
tion i~b for each column ~b of ~B. Since we insert at most (h(nbω (m1))2R)d

′|P |3 simple loops, each of
length at most h(nbω (m1))

r1 , |σ′| ≤ (h(nbω (m1))2R)d
′|P |3h(nbω (m1))

r1 + (h(nbω (m1))
|P |+ 1)2.

Choose the constant d s.t. |σ′| ≤ (h(nbω (m1))2R)d
′|P |3 × h(nbω (m1))

r1 + (h(nbω (m1))
|P | + 1)2 ≤

(h(nbω (m1))2R)d|P |
3
. Now we conclude that |σ′| ≤ (h(nbω (m1))2R)d|P |

3
.

Step 5: Now we prove that σ′ is a h-PS enabled atm1. Recall thatm1
σ−→h m2 and that σ′ is obtained

from σ by removing or adding extra copies of some simple loops. We infer that m1
σ′−→h m2. Now we

show that effect(σ′) � 0. Since for any simple loop π in σ, effect(π)(p) = 0 for all p ∈ P \ ω(m1), we
have effect(σ′)(p) = effect(σ)(p) ≥ 0.

For any p ∈ Pω, we have ( ~B~y+∆Pω [σ′′])(p) ≥ ~d(p) ≥ 1. Hence, ~y(∆Pω [π]) ≥ 1 and ∆Pω [π](p) =
1 for some simple loop π or ∆Pω [σ′′](p) = 1. From the definitions of ∆Pω [π] and ∆Pω [σ′′], the only
way this can happen is for some transition t in either some simple loop π or σ′′ to have effect(t) = ω.
Hence, there is some transition t in σ′ such that effect(t)(p) = ω. Hence, effect(σ′)(p) = ω.

For any p ∈ ω(m1) \ Pω, we have effect(σ′)(p) = ( ~B~y + ∆Pω [σ′′])(p) ≥ ~d(p) ≥ 0. Hence,
effect(σ′)(p) ≥ 0. ut

Definition 5.7. Let c = 2d. The functions h1, h2, ` : N→ N are as follows:

h1(0) = 1 `(0) = (2R)c|P |
3

h2(0) = R

h1(i+ 1) = 2R`(i) `(i+ 1) = (h1(i+ 1)2R)c|P |
3

h2(i+ 1) = R`(i)
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p1

pi

pi+1

≥ 2R`(i)→ ω

≤ `(i) ≤ `(i)

Figure 5. Intuition for the threshold functions

All the above functions are non-decreasing. Due to the selection of the constant c above, we have
(2xR)c|P |

3 ≥ x|P | + (2xR)d|P |
3

for all x ∈ N.
The goal is to prove that if there is a self-covering execution, there is one whose length is at most

`(|P |). That proof uses the result of Lemma 5.6 and the definition of ` above reflects it. For the intuition
behind the definition of h1 and h2, suppose that the proof of the length upper bound of `(|P |) is by
induction on |P | and we have proved the result for |P | = i. For the case of i+ 1, we want to decide the
value beyond which it is safe to abstract by replacing numbers by ω. As shown in Fig. 5, suppose the
initial prefix of a self-covering execution for i places is of length at most `(i). Also suppose the pumping
portion of the self-covering execution is of length at most `(i). The total length is at most 2`(i). Since
each transition can reduce at most R tokens from any place, it is enough to have 2R`(i) tokens in pi+1

to safely replace numbers by ω.
The following lemma shows that if some ω-marking can be reached in threshold semantics, a corre-

sponding marking can be reached in the natural semantics where ω is replaced by a value large enough
to solve the termination problem.

Lemma 5.8. For some ω-markings m3 and m4, suppose m3
σ−→h1 m4. Then there is a sequence σ′ such

that [m3]ω→h1
σ′−→ m′4, m′4 �ω(m4) [m4]ω→h2 and |σ′| ≤ h1(nbω (m3))

|P |.

Proof:
Let σ′ be obtained from σ by removing all transitions between any two identical ω-markings occurring in

the run m3
σ−→h1 m4. The number of distinct ω-markings appearing in the run m3

σ′−→h1 m4 is an upper
bound on |σ′|. Among the ω-markings in this run, m3 has the maximum number of places not marked
ω. Since h1 is non-decreasing, we infer from the definition of threshold semantics (Definition 5.2) that
h1(nbω (m3))

|P | is an upper bound on the number of possible distinct ω-markings. Hence, |σ′| ≤
h1(nbω (m3))

|P |. We will now prove that for any run m3
σ′−→h1 m4 where all intermediate ω-markings

are distinct from one another, [m3]ω→h1
σ′−→ m′4 and m′4 �ω(m4) [m4]ω→h2 . The proof is by induction

on nbω (m4)− nbω (m3) (the number of places where ω is newly introduced).
Base case nbω (m4) − nbω (m3) = 0: We have |σ′| ≤ h1(nbω (m3))

|P | ≤ `(nbω (m3)). For any
p′ ∈ ω(m3), we have by Definition 5.1 and Definition 5.7 that [m3]ω→h1(p′) = h1(nbω (m3) + 1) =

2R`(nbω (m3)). We conclude from Proposition 5.3 that [m3]ω→h1
σ′−→ m′4 and m′4 �ω(m4) [m4]ω→h2 .

Induction step: Let m5 be the first ω-marking after m3 such that nbω (m5) > nbω (m3). Let
σ′ = σ1tσ2 where m3

σ1−→h1 m6
t−→h1 m5

σ2−→h1 m4. Note that due to our choice of m5, we
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have ω(m6) = ω(m3). In any intermediate marking m 6= m3 in the run m3
σ1−→h1 m6, m(p) <

h1(nbω (m3)) for all p ∈ P \ ω(m3) (otherwise, p would have been marked ω, contradicting ω(m6) =
ω(m3)). Hence we have |σ1| ≤ h1(nbω (m3))

|P |. For any p′ ∈ ω(m3), we have by Definition 5.1
and Definition 5.7 that [m3]ω→h1(p′) = h1(nbω (m3) + 1) = 2R`(nbω (m3)). We conclude from
Proposition 5.3 that [m3]ω→h1

σ1−→ m′6 where m′6 �ω(m6) m6 and for all p′ ∈ ω(m6), m′6(p
′) ≥

2R`(nbω (m3)) − Rh1(nbω (m3))
|P |. Transition t is enabled at m′6. Let m′6

t−→ m′5, where for
any p such that effect(t)(p) = ω, we chose m′5(p) ≥ h1(nbω (m5) + 1). We now conclude that
m′5 �ω(m5) [m5]ω→h1 due to the following reasons:

1. p ∈ P \ ω(m5): we have p ∈ P \ ω(m6).

m′5(p) = m′6(p) + effect(t) [semantics of ωPN ]

= m6(p) + effect(t) [m′6 �ω(m6) m6]

= m5(p) [[m6 + effect(t)]h1→ω = m5,m5(p) 6= ω]

= [m5]ω→h1(p)

2. p ∈ ω(m5), effect(t)(p) = ω: m′5(p) ≥ h1(nbω (m5) + 1) by choice.

3. p ∈ ω(m5), effect(t)(p) 6= ω, p /∈ ω(m6): since [m6 + effect(t)]h1→ω = m5 and m5(p) = ω,

m6(p) + effect(t)(p) ≥ h1(nbω (m6))

⇒ m6(p) + effect(t)(p) ≥ h1(nbω (m5) + 1) [nbω (m5) > nbω (m6)]

⇒ m′6(p) + effect(t)(p) ≥ h1(nbω (m5) + 1) [m′6 �ω(m6) m6]

⇒ m′5(p) ≥ h1(nbω (m5) + 1) [semantics of ωPN ]

4. p ∈ ω(m5), effect(t)(p) 6= ω, p ∈ ω(m6):

m′5(p) = m′6(p) + effect(t)(p) [semantics of ωPN ]

≥ m′6(p)−R [Definition of R]

≥ 2R`(nbω (m3))−Rh1(nbω (m3))
|P | −R [p ∈ ω(m6)]

≥ R`(nbω (m3))−Rh1(nbω (m3))
|P |

= R(h1(nbω (m3))2R)c|P |
3 −Rh1(nbω (m3))

|P | [Definition 5.7]

≥ h1(nbω (m3)) ≥ h1(nbω (m5) + 1)

The last inequality follows since nbω (m5) > nbω (m3).

Since nbω (m4) − nbω (m5) < nbω (m4) − nbω (m3) and all intermediate ω-markings in the run
m5

σ2−→h1 m4 are distinct from one another, we have by induction hypothesis that [m5]ω→h1
σ2−→ m′′4 and

m′′4 �ω(m4) [m4]ω→h2 . Since [m3]ω→h1
σ1−→ m′6

t−→ m′5, m′5 �ω(m5) [m5]ω→h1 and [m5]ω→h1
σ2−→ m′′4 ,

we infer by strong monotonicity that [m3]ω→h1
σ1tσ2−−−→ m′4 and m′4 �ω(m4) [m4]ω→h2 . ut

Lemma 5.9. If an ωPN N admits a self-covering execution, then it admits one whose sequence of
transitions is of length at most `(|P |).
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Proof:
Suppose σ = σ1σ2 is the sequence of transitions in the given self-covering execution such that m0

σ1−→
m1

σ2−→ m2 and m2 � m1. A routine induction on the length of any sequence of transitions σ shows that
ifm3

σ−→ m4, we havem3
σ−→h1 m

′
4 withm′4−m3 � m4−m3. Hence, we havem0

σ1−→h1 m
′
1
σ2−→h1 m

′
2

with m′2 � m′1. By monotonicity, we infer that for any i ∈ N+, m′i
σ2−→h1 m

′
i+1 with m′i+1 � m′i. Let

j ∈ N+ be the first number such that ω(m′j) = ω(m′j+1). We have m0
σ1σ

j−1
2−−−−→h1 m

′
j
σ2−→h1 m

′
j+1 and

σ2 is an ω-maximal h1-PS enabled at m′j .
By Lemma 5.6, there is a h1-PS σ′2 enabled at m′j whose length is at most

(h1(nbω
(
m′j

)
)2R)d|P |

3
. By Lemma 5.8, there is a sequence σ′1 such that m0

σ′1−→ m′′j , m′′j �ω(m′j)
[m′j ]ω→h2 and |σ′1| ≤ (h1(|P |))|P |. By Definition 5.7 and Definition 5.1, we infer that m′′j (p) =

R`(nbω
(
m′j

)
) = R(h1(nbω

(
m′j

)
)2R)c|P |

3 ≥ R|σ′2| for all p ∈ ω(m′j). Hence, we infer from

Proposition 5.3 that m0
σ′1−→ m′′j

σ′2−→ m′′j+1. Since σ′2 is a h1-PS, effect(σ′2) � 0, and so m′′j+1 �
m′′j . Therefore, firing σ′1σ

′
2 at m0 results in a self-covering execution. The length of σ′1σ

′
2 is at most

(h1(|P |))|P | + (h1(nbω
(
m′j

)
)2R)d|P |

3 ≤ `(|P |). ut

Lemma 5.10. Let k = 3c. Then `(i) ≤ (2R)k
i+1|P |3(i+1)

for all i ∈ N.

Proof:
By induction on i. For the base case i = 0, the result is obvious since by Definition 5.7, `(0) = (2R)c|P |

3
.

The following proves the induction step.

`(i+ 1) = (h1(i+ 1)2R)c|P |
3

= (2R`(i) · 2 ·R)c|P |
3

[Definition 5.7]

= (4R2)c|P |
3
(`(i))c|P |

3
= (2R)2c|P |

3
(`(i))c|P |

3

≤ (2R)2c|P |
3
((2R)k

i+1|P |3(i+1)
)c|P |

3
[Induction hypothesis]

= (2R)2c|P |
3
(2R)ck

i+1|P |3(i+2) ≤ (2R)3ck
i+1|P |3(i+2)

= (2R)k
i+2|P |3(i+2)

ut

Theorem 5.11. The termination problem for ωPN is EXPSPACE-c.

Proof:
Since ωPN generalise Petri nets, and since termination is EXPSPACE-c for Petri nets [19, 22], termination
is EXPSPACE-hard for ωPN. Let us now show that termination for ωPN is in EXPSPACE. We have from
Lemma 2.6 that an ωPN N does not terminate iff it admits a self-covering execution. From Lemma 5.9,
it admits a self-covering execution iff it admits one whose sequence of transitions is of length at most
`(|P |). The following non-deterministic algorithm can guess and verify the existence of such a sequence.
It works with ω-markings, storing ω in the respective places whenever an w-transition is fired. It takes as
input an ωPN N , with initial marking m0. It outputs SUCCESS if a self-covering execution is guessed,
FAIL otherwise.
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1 counter := 0
2 m := m0

3 if counter > `(|P |) return FAIL

4 else

5 non-deterministically choose a transition t
6 if t is not enabled at m return FAIL

7 else

8 m := m+ effect(t)
9 counter := counter + 1

10 non-deterministically go to line 3 or line 11

11 in m, replace ω by R`(|P |)
12 m1 := m
13 if counter > `(|P |) return FAIL

14 else

15 non-deterministically choose a transition t
16 if t is not enabled at m1 return FAIL

17 else

18 m1 : = m1 + effect(t)
19 counter := counter + 1
20 non-deterministically go to line 13 or line 21

21 if m1 � m return SUCCESS else return FAIL

The above algorithm tries to guess a sequence of transitions σ1σ2 such that m0
σ1−→ m

σ2−→ m1, guessing
σ1 in the loop between lines 3 and 10 and σ2 in the loop between lines 13 and 20. If N admits a self-
covering execution with sequence of transitions σ1σ2 such that |σ1σ2| ≤ `(|P |), then the execution of
the above algorithm that guesses σ1σ2 will return SUCCESS. If all executions of N are finite, then all
executions of the above algorithm will return FAIL.

The space required to store the variable “counter” in the above algorithm is at most log(`(|P |)).
The space required to store m and m1 is at most |P |(‖m0‖∞ + log(R`(|P |))). Using the upper
bound given by Lemma 5.10, we conclude that the memory space required by the above algorithm is
O(|P | log‖m0‖∞+k|P |+1|P |3|P |+4 logR). This can be simplified toO(2c

′|P | log |P |(logR+log‖m0‖∞)).
Using the well known Savitch’s theorem to determinise the above algorithm, we get an EXPSPACE upper
bound for the termination problem in ωPN. ut

6. Finding concrete counter-examples for coverability

•

•

create1

create2

p

enter

• •
C.S.ω

ω

Figure 6. An example of parallel system
where a mutex property is not enforced.

As we have argued in the introduction, ω-arcs can be con-
veniently used in the setting of parametrised verification to
model, in an abstract way, operations involving a paramet-
ric number of processes, modeled as tokens. Then, several
safety properties of the system can be reduced to the cover-
ability problem. As an example, consider the ωPN in Fig. 6,
where two transitions create an unbounded number of pro-
cesses (in place p). Place C.S. represents here a critical sec-
tion and we would like to prove that mutual exclusion holds
on this place, i.e. it is not possible to reach a marking m in
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the set Bad = {m | m(C.S.) ≥ 2} – a typical example of
coverability property. Unfortunately, the property does not hold on this example, so it makes sense to
ask what would be a concrete version of this protocol where the bug still occurs. By concretisation of an
ωPN, we mean a variant of ωPN obtained by replacing the ω on the arcs by natural numbers. Symmet-
rically, it is also interesting to compute the largest set of tuples of values that we can use to replace the
ω’s and keep the system safe (i.e., avoid coverability). On our example, if we let v = 〈v1, v2〉 be a vector
where v1 and v2 are respectively the labels to replace the ω’s on the arcs from create1 and create2, the set
of possible values for v yielding a PN that can still reach Bad is: {v | v � (2, 0)∨v � (1, 1)∨v � (0, 2)}.
Observe that this set is upward-closed8. It is easy to see that it will always be the case for output arcs: if
a PN can reach some upward-closed set U , then, increasing the weights on its output arcs yields a new
PN that can still reach U . On the other, if a PN can reach some upward-closed set U , then, decreasing
the weights on its input arcs yields too a new PN that can still reach U . Hence, from now on, we will
always assume that we replace all ω on input arcs by 0 in any concretisation of an ωPN, which allows us
to focus on the computation of the set of vectors that ensure coverability.

Let us formalise this problem. Let us fix an ωPN N = 〈P, T,m0〉. As in the previous parts of the
paper, we slightly abuse notations, and denote by ON (resp. IN ) the functions T × P 7→ (N ∪ {ω})|P |
s.t. for all p, t: IN (t, p) = I(t)(p) (resp. ON (t, p) = O(t)(p)) in N . We denote by AωN the set
of ω-output arcs of N , i.e. AωN = {(t, p) | ON (t, p) = ω}. Let us assume an arbitrary but fixed
order on the pairs (t, p) in AωN , and let v be an AωN -indexed vector of values in N ∪ {ω}. We denote
by N (v) the ωPN obtained by replacing each ω-output arc by an arc whose weight is given by v, and
removing each ω-input arc. Formally, N (v) = 〈P, T ′,m0〉 is the ωPN s.t. for all (t, p) ∈ T × P :
ON (v)(t, p) = v(t, p) if ON (t, p) = ω, and ON (v)(t, p) = ON (t, p) otherwise; IN (v)(t, p) = 0 if
IN (t, p) = ω, and IN (v)(t, p) = IN (t, p) otherwise. When v is a vector of natural values only, we say
that N (v) is a concretisation of N .

Given an ωPN N and a marking m, the problem sketched above thus consists to compute the set:

CVec (N ,m) = {v | N (v) is a concretisation of N and m ∈↓(Reach(N (v)))}

It is easy to see that CVec (N ,m) is upward-closed for the � ordering, i.e. m1 ∈ CVec (N ,m) implies
thatm2 ∈ CVec (N ,m) for allm2 s.t. m2 � m1. Since� is a wqo, there exists a finite representation of
CVec (N ,m), i.e. a finite set of vectors S s.t. ↑(S) = CVec (N ,m), where ↑(S) is the�-upward closure
of S: ↑(S) = {v | v ∈ N|AωN |∧∃v′ ∈ S : v′ � v}. To compute a finite representation of CVec (N ,m), we
rely on a general algorithm introduced by Valk and Jantzen [26]. They show that a finite representation
of any upward-closed set U of k-tuples of natural numbers (for any k) can be computed if U has the RES
property, i.e. if we can decide, for each v ∈ (N ∪ {ω})K whether9 γ(v) ∩ U = ∅. Let us show that this
property holds for CVec (N ,m):

Lemma 6.1. For all ωPN N and all markings m of N , CVec (N ,m) has the RES property: for all
vectors v ∈ (N ∪ {ω})|AωN |, we can decide whether γ(v) ∩ CVec (N ,m) = ∅.

Proof:
In the case where v is a vector of natural numbers (i.e., v contains no ω), and since CVec (N ,m) is

8Conversely, the set of safe values for v (that guarantee to avoid Bad) is downward-closed.
9recall that γ(v) is the concretisation of v, i.e., the set of all tuples of naturals that are smaller than v.
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upward-closed, γ(v) ∩ CVec (N ,m) = ∅ iff v 6∈ CVec (N ,m). By definition of CVec (N ,m), this last
statement holds iff m 6∈↓(Reach(N (v))), an instance of the (decidable) coverability problem on PNs.

In the case where v contains at least one ω, we have to decide whether there exists v ∈ γ(v) s.t. N (v)
can coverm. To solve this question, we consider the ωPNN (v). Observe thatN (v) is not a PN, and thus
not a concretisation ofN , since we have assumed that v contains at least one ω. On the one hand, assume
m ∈↓(Reach(N (v))), and let π = m0, t1,m1, . . . tn,mn be an execution of N (v) s.t. mn � m. For
each output arc (t, p) ∈ AωN (v)), letM(t,p) be the maximal number of tokens produced by this arc along π.
Then, we let v be the vector s.t. for all (t, p) ∈ AωN : v(t, p) = v(t, p) if v(t, p) 6= ω and v(t, p) = M(t,p)

otherwise. By monotonicity of Petri nets, is easy to check that π’s sequence of transitions t1t2 · · · tn
is firable in N (v) and reaches a marking m′n s.t. m′n � mn � m. Hence, m ∈↓ (Reach(N (v))).
On the other hand, assume m 6∈↓(Reach(N (v))). In this case, it is easy to see that, for all v ∈ γ(v):
m 6∈↓(ReachN (v)). Thus, we conclude that there is v ∈ γ(v) s.t. N (v) can cover m iff the ωPN N (v)
can cover m. This last question is decidable as it is an instance of the coverability problem for ωPN. ut

Hence, using the technique of Valk and Jantzen [26, Theorem 2.14], we conclude that:

Corollary 6.2. For all ωPNN and all markingm, we can compute a finite representation of CVec (N ,m).

7. Extensions with transfer or reset arcs

In this section, we consider two extensions of ωPN, namely: ωPN with transfer arcs (ωPN+T) and ωPN
with reset arcs (ωPN+R). These extensions have been considered in the case of plain Petri nets: Petri
nets with transfer arcs (PN+T) and Petri nets with reset arcs (PN+R) have been extensively studied in the
literature [8, 1, 9, 25]. Intuitively, a transfer arc allows us to transfer all the tokens from a designated
place p to a given place q, while a reset arc consumes all tokens from a designated place p. Those
extensions have been applied in particular to model concurrent multi-threaded programs with inter-thread
communication primitives such as broadcasts [10, 6]. It is thus natural to combine ω-arcs with resets or
transfers, to obtain a rich model for concurrent multi-threaded programs.

Formally, an extended ωPN is a tuple 〈P, T 〉, where P is a finite set of places and T is finite set of
transitions. Each transition is a pair t = (I,O) where I : P 7→ N ∪ {ω,T,R}; O : P 7→ N ∪ {ω,T};
|{p | I(p) ∈ {T,R}}| ≤ 1; |{p | O(p) ∈ {T}}| ≤ 1; there is p s.t. I(p) = T iff there is q s.t.
O(q) = T; and if there is p s.t. I(p) = R, then, O(p) ∈ N ∪ {ω} for all p. A transition (I,O) s.t.
I(p) = T (resp. I(p) = R) for some p is called a transfer (reset). An ωPN with transfer arcs (resp.
with reset arcs), ωPN+T (ωPN+R) for short, is an extended ωPN that contains no reset (transfer). An
ωPN+T s.t. I(t)(p) 6= ω for all transitions t and places p is an ωOPN+T. The class ωIPN+T is defined
symmetrically. An ωPN+T which is both an ωOPN+T and an ωIPN+T is a (plain) PN+T. The classes
ωOPN+R, ωIPN+R and PN+R are defined accordingly.

Let t = (I,O) be a transfer or a reset. t is enabled in a marking m iff for all p: I(p) 6∈ {ω,T,R}
implies m(p) ≥ I(p). In this case firing t yields a marking m′ = m −mI + mO (denoted m t−→ m′)
where for all p: mI(p) = m(p) if I(p) ∈ {T,R}; 0 ≤ mI(p) ≤ m(p) if I(p) = ω; mI(p) = I(p) if
I(p) 6∈ {T,R, ω}; mO(p) = m(p′) if O(p) = I(p′) = T ; mO(p) ≥ 0 if O(p) = ω; and mO(p) = O(p)
if O(p) 6∈ {T, ω}. The semantics of transitions that are neither transfers nor resets is as defined for ωPN.

Let us now investigate the status of the problems listed in Section 2, in the case of ωPN+T and
ωPN+R. First, since ωPN+T (ωPN+R) extend PN+T (PN+R), the lower bounds for the latter carry on:
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reachability and place-boundedness are undecidable [7] for ωPN+T and ωPN+R; boundedness is un-
decidable for ωPN+R [9]; and coverability is Ackerman-hard for ωPN+T and ωPN+R [25]. On the
other hand, the construction given in Section 4 can be adapted to turn an ωPN+T (resp. ωPN+R) N
into a PN+T (PN+R) N ′ satisfying Lemma 4.1 (i.e., projecting Reach(N ′,m0) on the set of places of
N yields Reach(N ,m0)). Hence, boundedness for ωPN+T [9], and coverability for both ωPN+T and
ωPN+R are decidable [1]. As far as termination is concerned, it is decidable [8] and Ackerman-hard [25]
for PN+R and PN+T. Termination, however, becomes undecidable for ωOPN+R or ωOPN+T:

Theorem 7.1. Termination is undecidable for ωOPN+T and ωOPN+R with one ω-output-arc.

Proof:
We first prove undecidability for ωOPN+T. The proof is by reduction from the parametrised termination
problem for Broadcast protocols (BP) [10]. It is well-known that PN+T generalise broadcast protocols,
hence the following parametrised termination problem for PN+T is undecidable: ‘given a PN+T 〈P, T 〉
and an ω-marking m0, does 〈P, T,m0〉 terminate for all m0 ∈↓(m0) ?’ From a PN+T N = 〈P, T 〉
and an ω-marking m0, we build the ωOPN+T (with only one ω-output-arc) N ′ = 〈P ′, T ′,m′0〉 where
P ′ = P ] {pinit}, T ′ = T ] {(I,O)}, I = {pinit}, O = {ω ⊗ p | m0(p) = ω}, and m′0 = {m0 ⊗ p |
m0(p) 6= ω}. Clearly, N ′ terminates iff 〈P, T,m0〉 terminates for all m0 ∈↓(m0). Hence, termination
for ωOPN+T is undecidable too. Finally, we transform any ωOPN+RN = 〈P, T,m0〉 into an ωOPN+T
N ′ = 〈P ] {ptrash}, T ′,m0〉, s.t. t′ ∈ T ′ iff either (i) t′ ∈ T and t′ is not a reset; or (ii) there is a
reset t ∈ T and a place p ∈ P s.t. I(t)(p) = R, I(t′)(p) = T, O(t′)(ptrash) = T, for all p′ 6= p:
I(t′)(p′) = I(t)(p′) and for all p′′ 6= ptrash: O(t′)(p′′) = O(t)(p′′). The construction replaces each
reset of place p in N by a transfer from p to a fresh place ptrash from which no transition consume, in
N ′. Since N ′ terminates iff N terminates, termination is undecidable for ωPN+R too. ut

However, the construction of Section 4 can be applied to ωIPN+T and ωIPN+R to yield a corresponding
PN+T (resp. PN+R) that preserves termination. Hence, termination is decidable and Ackerman-hard for
those models. This justifies the results on ωPN+T and ωPN+R given in Table 1.
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