
ECEASST

Verifying Web Services over Unbounded, Reliable Channels

Alexander Heußner

Université Libre de Bruxelles

Abstract: Proving the maturity of the verify tool by improving a case study on
web service business protocols that was not able to handle unbounded fifo channels.

Keywords: safety verification, distributed systems, web services, fifo channels, tool

Introduction The automatic verification of distributed algorithms and communication proto-
cols is one of the most crucial tasks in software/hardware development and maintenance. It is
also one of the hardest, e.g., as one cannot directly infer the global behaviour of a distributed
system from its local components due to asynchronous communication. This renders already
simple analysis, verification, and synthesis questions hard problems in theory. However, in prac-
tice, this leads to a growing demand for versatile tools that also apply semi-algorithmic solutions,
approximations, abstractions, and heuristics.

We focus on the reachability/safety verification of communicating finite-state machines (CM),
an infinite-state formalism that consists of a set of local, finite state machines that communicate
via global, asynchronous, reliable and unbounded fifo channels. The latter are demanded in prac-
tice by, e.g., distributed applications based on TCP, the Sockets API, Erlang’s message channels,
or MPI, but also MSCs and UML state-charts. Note that CM do not demand the channels to be
a priori point-to-point. The safety verification question demands, given a CM and a set of “bad”
states, whether no execution of this CM reaches the bad states. It is folklore that CM are Turing
powerful, hence this question is undecidable for CM.

Currently, there is no specific tool—at least to our knowledge—that directly focusses on the
safety verification of CM. State-of-the-art approaches, like SPIN or CADP, rely on a priori
bounding the size of the channels. The UPPAAL tool restricts channels to asynchronous ren-
dezvous, TReX focusses on lossy channels, however both permit more powerful local process
models. These under- & over-approximations for CM’s reliable, unbounded channels, however,
easily introduce false positives or false negatives with respect to safety verification of protocols.
As CM are infinite-state systems, tools for this more general setting, like ARMC, would also be
applicable. These, however, do not easily allow to input CM, and rely on abstractions for the
infinite data domain that are not specifically adapted to fifo channels’ intricacies.

We aim at filling this gap by presenting a Model Checker for Systems of Communicating Ma-
chines (McScM) that combines different algorithms for the safety verification problem of CM
under the same roof and provides a ready-to-use front-end with the tool verify. The imple-
mented algorithms are an abstract interpretation based approach (absint), abstract regular model
checking (armc), counter-example guided abstraction refinement (cegar), and tree-refinement
based lazy abstraction refinement (lart). McScM was introduced in more detail in [HGS12].

Web Services Case Study In the following we briefly show the merit of verify by com-
paring to a case study for verifying web services business activity protocols [RSV11], originally

1 / 2 Volume X (2012)



Verifying Web Services over Unbounded, Reliable Channels

absint armc cegar lart

BAwCC 1 s / 7.75 MiB — — —
BAwCC (enh.) 0.37 s / 6.85 MiB 2.66 s / 29 MiB 8.5 s / 20.41 MiB —
BAwPC 1.49 s / 11.69 MiB 3.05 s / 46.56 MiB 206 s / 126.97 MiB —
BAwPC (enh.) 0.5 s / 6.84 MiB 0.16 s / 7.81 MiB 0.36 s / 6.84 MiB 0.95 s / 7.81 MiB

Figure 1: verify’s different algorithms applied to the four web service business protocols of [RSV11] (results: running time /
memory for proving safety, “—” if time > 10 min, on off-the-shelf computer with Intel Core i5 1.7GHz)

implemented with the help of UPPAAL. As protocols from the web service business activity pro-
tocol stack are crucial for protocols implemented on top of it, automatic verification with respect
to safety requirements is a crucial task.

The approach in [RSV11] was able to verify the Business Agreement with Participant Com-
pletion (BAwPC) and Business Agreement with Coordinator Completion (BAwCC) protocols
under the assumption that channels are bounded a priori, by modelling channels explicitly in
UPPAAL. This, however, proved to be the weak point: as explicitly representing k-bounded
channels by a sequence of k processes leads to a combinatorial explosion of the global system’s
state space. Hence, the original study was not able to derive verification results for more than two
channels of size larger than three with reasonable resources. Figure 1 shows our results on the
same protocols with verify (translating their XML-based protocol format to our input format
beforehand), which is able to prove that the protocols are safe when asserting unbounded reliable
channels with reasonable resources. Note that our various implemented algorithms adapt differ-
ently for proving safety or finding counterexamples, hence, the “—” for the abstract-check-refine
approaches which are better suited for thoroughly searching for counterexamples.

Thus verify disproves the conjecture in [RSV11] that “there is no hope to establish the cor-
rectness of the protocol with unbounded FIFO communication in a fully automatic way” [RSV11,
p10] in a positive way. The case study in [RSV11] additionally verified boundedness properties
and compared different channel policies, like lossy channels. When fixing a bound k for the chan-
nels, k-boundedness can be reduced to safety and lossy channels are also verifiable in verify.

Conclusion / Outlook The verify tool with its different implemented algorithms proves
to be the “swiss army knife” of safety verification for CM (as there is no silver bullet algo-
rithm [HGS12], the choice of the right “blade” is up to the user). Further, McScM and thus
verify are easily extensible to other algorithms due to their modular architecture. McScM
also includes a synthesis tool that allows one to automatically fix unsafe protocols.

Currently, we plan to attack larger case studies, e.g., based on the industry derived examples
in the CADP framework. verify is also used by external tools, e.g., for verifying distributed
process models derived from log files, and will be included in the tool from [RSV11] as an
additional back end. McScM and the verify tool can be downloaded with a series of example
protocols, ranging from distributed leader election to a BRP-like protocol, at:

http://altarica.labri.fr/forge/projects/mcscm/wiki/.
References

[HGS12] A. Heußner, T. L. Gall, G. Sutre. McScM: A General Framework for the Verification of Com-
municating Machines (Tool). In Proc. of TACAS’12. LNCS 7214, pp. 478–484. Springer, 2012.

[RSV11] A. P. Ravn, J. Srba, S. Vighio. Modelling and Verification of Web Services Business Activity
Protocol. In Proc. of TACAS’11. LNCS 6605, pp. 357–371. Springer, 2011.

Proc. AVoCS 2012 2 / 2

http://altarica.labri.fr/forge/projects/mcscm/wiki/

